Skip to main content
Knowledge4Policy
Knowledge for policy
Supporting policy with scientific evidence

We mobilise people and resources to create, curate, make sense of and use knowledge to inform policymaking across Europe.

  • Publication | 2026
Trade-offs and synergies in agroecosystem services with organic and integrated nutrient management in South Asian agri-food systems: Evidence from a meta-analysis

Highlights:

  • Meta-analysis of 869 observations from 260 South Asian field studies.
  • FYM reduced yield by 4.77 % but enhanced carbon sequestration by 24.5 % vs. NPK.
  • INM increased yield by 21.17 % and improved soil fertility without raising GHGs.
  • INM lowered water use by 9.21 % and enhanced multiple ecosystem services.
  • About 75 % of INM cases showed win–win outcomes for yield and sustainability.

Abstract:

Context

The widespread and indiscriminate use of agrochemicals, coupled with unsustainable farming practices, has degraded soil health, polluted water resources, reduced biodiversity, and jeopardized environmental and human health in South Asia. Addressing these challenges requires climate-smart and sustainable nutrient management strategies that can enhance both crop productivity and agroecosystem services.

Objective

This study aimed to evaluate the trade-offs and synergies in agroecosystem services resulting from organic nutrient management using farmyard manure (FYM) and integrated nutrient management (INM), combining FYM with chemical fertilizers, compared to conventional chemical fertilizer practices across South Asian agri-food systems.

Methods

A meta-analysis was conducted using 869 pair-wise observations extracted from 260 field-based studies conducted exclusively in South Asia. Studies were selected through systematic screening using the PRISMA protocol and classified by climate zone, soil type, and duration. The impact of FYM and INM treatments was assessed relative to chemical (NPK) fertilizer controls across five ecosystem services: crop yield, carbon sequestration, soil fertility, greenhouse gas (GHGs) emissions, and water use. The natural log response ratio was used as the effect size metric.

Results

The application of FYM alone resulted in a 4.71 % average reduction in crop yield compared to chemical fertilizers, but improved carbon sequestration (24.53 %), nutrient availability nitrogen (6.93 %), phosphorus (4.36 %), and potassium (2.49 %), and reduced water use (7.10 %). INM led to a 21.17 % increase in crop yield and significantly improved carbon sequestration and nutrient availability compared to chemical fertilizers. About 75 % of INM-related observations showed a synergistic improvement in yield and non-marketed ecosystem services, reflecting win–win outcomes.

Conclusions

While FYM alone may not always match the yield performance of chemical fertilizers, it contributes to long-term soil health and water use efficiency. INM offers a balanced approach that enhances both productivity and environmental sustainability in diverse agro-climatic zones of South Asia.

Implications

These findings highlight the potential of organic and integrated nutrient strategies as climate-smart solutions for enhancing agroecosystem services in South Asian agri-food systems. The study supports informed decision-making by farmers and policymakers to promote integrated nutrient use and reduce over-reliance on chemical inputs, contributing to more resilient and sustainable agricultural systems.