Skip to main content
Knowledge4Policy
Knowledge for policy

Supporting policy with scientific evidence

We mobilise people and resources to create, curate, make sense of and use knowledge to inform policymaking across Europe.

  • Publication | 2025

High-frequency monitoring enables machine learning–based forecasting of acute child malnutrition for early warning

As the number and share of people suffering from food insecurity worldwide has risen over the past decade, the humanitarian response community increasingly seeks advances in early warning systems to target populations who need food assistance. Advances in Earth Observation data and in machine learning have excited interest in their potential to help with early warning and geographic targeting of food assistance. To date, however, the predictive performance of such models with respect to child acute malnutrition has disappointed. We show how predictive skill and predictors vary over time and demonstrate the high value of monthly monitoring of child anthropometry in sentinel sites. With such data it is feasible to generate reasonably accurate forecasts at time horizons of 6 mo.