Digital and green transformation of European regions and greenhouse gas emissions

INNOVA MEASURE IV online Workshop

Stefano Bianchini ^a Giacomo Damioli ^b Claudia Ghisetti ^c

^aBETA - Université de Strasbourg, France ^bEurpean Commission, Joint Research Centre ^cUniversità Cattolica del Sacro Cuore, Milano

The context

- Policy need of benchmarking the EU in the development of new scientific research and technological digital and green knowledge
 - ✓ 2030 Agenda for Sustainable Development (UN General Assembly, 2015)
 - ✓ European Green Deal (EC, 2019)
 - ✓ Science, Research and Innovation Performance of the EU report (EC, 2020)
 "A fair, green and digital Europe"
 - ✓ Wide range of investments, financing tools for environmentally-friendly technologies, support to industry innovations, etc.
- Digital transformation generates enabling / reinforcing knowledge and technologies for meeting societal challenges (Cockburn et al., 2018)
- Lack of documentation and data to support policy decisions

- Unique dataset on regional digital and green scientific (publications) and technological (patents) knowledge and greenhouse gas emissions for the 2000-2018 period in the European Union (EU28), Norway and Switzerland at the NUTS3 regional level
- Range of metrics and statistics for a list of selected variables to illustrate the potential use of the data for policy and academic purposes
- First step of a more comprehensive research project to address the policy need for benchmarking EU regions in the development of scientific research and technological digital and green knowledge

- Scientific research:
 - $\checkmark\,$ Web of Science (WoS) publications in digital scientific fields (DS)
 - $\checkmark\,$ WoS publications in green scientific fields (GS)
- Technological knowledge:
 - ✓ European Patent Office (EPO) patent applications in digital technologies (DT)
 - $\checkmark\,$ EPO patent applications in green technologies (GT)
- Emissions of selected pollutants:
 - ✓ European Pollutant Release and Transfer Register (E-PRTR)
 - \checkmark Emissions related to industrial production (no consumption and transport)

- <u>Digital</u>: Keyword-based approach recently proposed in Van Roy et al. (2020), complemented by a few additional terms referring to the ongoing digital transformation (e.g. IoT, Additive manufacturing) Backup
 - ✓ 221,284 WoS documents (103,853 published articles; 103,120 conference proceedings; 14,311 other) + Geolocalization using authors' affiliation
 - ✓ 14,095 European Patent Office applications
- <u>Green</u>: OECD classification of environmental technologies (OECD Envtech), refined identifying the sub-categories related to GHG emissions in addition to the overall green-tech domain + Keyword-based approach for WoS (Backup)
 - ✓ 241,088 WoS documents (161,642 published articles; 61,304 conference proceedings; 18,142 other) + Geolocalization using authors' affiliation
 - ✓ 97,493 European Patent Office applications

- Air emissions of selected pollutants from the European Pollutant Release and Transfer Register (E-PRTR) dataset
 - ✓ Nitrogen oxides (NOx), nitrous oxide (N20), sulphur oxides (SOx), greenhouse gases (GHG), ammonia (NH3), carbon dioxide (CO2) and particulate matter (PM10)
- E-PRTR data cover compulsory reporting of emissions for the period 2007-2017 by EU Member States; obligation for firms to register emissions when they exceed the applicable capacity thresholds specific to the sub-sector and the substance emitted
 - $\checkmark~$ Emissions related to industrial production
 - $\checkmark\,$ 6,876 facilities (28% have reported data on emissions of greenhouse gases throughout the full period)

Publication activity, by category

Notes: The left-hand scale refers to the categories "Digital" and "Green". The right-hand scale refers to the category "Digital & Green".

Trends in digital-green scientific knowledge

Patent activity, by NUTS2

Notes: Average number of digital (panel a) and green (panel b) patents per 100,000 inhabitants. Categories based on Jenks natural breaks optimization. Number of NUTS2 regions in parenthesis.

GHG emissions, by NUTS2 and metroregion

Notes: NUTS2 (panel a) and metro-regions (panel b) Categories based on Jenks natural breaks optimization. Number of NUTS2 / metro-regions in parenthesis.

Research agenda 1/2

- Taking stock of regional strengths and weaknesses for a European digital and green transition
 - ✓ Where is scientific and technological excellence located in Europe today? What type of collaborations (e.g. international networks, public-private links) are at the basis of knowledge creation and dissemination? Which factors (including policy ones) can explain this geographical distribution?
- Upsurge (and decline) of digital and green knowledge poles/hubs
 - ✓ Which factors explain the emergence of a region as a scientific and/or technological pole/hub? Are regional endowments in terms of physical and/or human capital able to explain this upsurge? Does the presence of DT knowledge hubs in certain regions facilitates the generation of environmental technologies of those regions?

Research agenda 2/2

- The influence of scientific and technological knowledge on GHG emissions
 - ✓ Which are the returns of digital and green scientific and technological knowledge on the regional environmental impact? Is the combination of DT and GT helping in reducing the environmental impacts of production and the related emissions of the regions in selected pollutants? And is it displaying any additional returns with respect to GT taken in isolation?
- Public demand, public funding and procurement for the digital and green transformation
 - ✓ Can public demand drive and foster the digital and green transformation? Which role for EU Horizon funding? And which role for public procurement in explaining such transition? Does the public funding lead to better quality outcomes?

- Identify fine-grained cohesive sub-fields composing the digital and green knowledge fields, using text corpus of the title and abstract of publications and patents Backup
- Econometric regional analysis of the direct relationships between green and digital knowledge/technologies and GHG (production) emissions
- Issues: address reverse-causality in the econometric setting
- Possible econometric future extension: account for cross-regional interaction in a spatial setting (e.g., using geographical distance, co-patenting and co-publishing as possible weighting matrices)

List of keywords related to digital scientific and technological knowledge

Keyword	Туре	Keyword	Type AI other	
Deep learning	AI learn	Neuro-Linguistic Programming		
Machine learning	AI learn	Object detection	AI other	
Reinforcement learning	AI learn	Predictive modelling	AI other	
Statistical learning	AI learn	Probabilistic modelling	AI other	
Supervised learning	AI learn	Random Forest	AI other	
Transfer Learning	AI learn	Self driv	AI other	
Unsupervised learning	AI learn	Sentiment analysis	AI other	
		Smart glasses	AI other	
Artificial intelligence	AI other	Speech Recognition	AI other	
Artificial intelligent	AI other	Unmanned Aerial Vehicle	AI other	
Artificial reality	AI other	Unmanned aircraft system	AI other	
Augmented realities	AI other	Virtual reality	AI other	
Augmented reality	AI other	Voice recognition	AI other	
Automatic classification	AI other			
Autonomous car	AI other	Internet of things	IOT	
Autonomous vehicle	AI other	U		
Bayesian modelling	AI other	Big data	Infrastructure	
Computational neuroscience	AI other	Edge Computing	Infrastructure	
Computer Vision	AI other	Fog Computing	Infrastructure	
Data mining	AI other	Hyper-Connectivity	Infrastructure	
Data science	AI other	5G	Infrastructure	
Decision tree	AI other			
Evolutionary Computation	AI other	Additive manufacturing	Additive manufacturing	
Face recognition	AI other	3D printing	Additive manufacturing	
Facial recognition	AI other	3D scanner	Additive manufacturing	
Gesture recognition	AI other			
Holographic display	AI other	Humanoid robot	Robot	
Knowledge Representation	AI other	Robotics	Robot	
Machine intelligence	AI other			
Machine to machine	AI other	Industry 4.0	IV0	
Mixed reality	AI other			
Natural Language Processing	AI other	Blockchain	Blockchain	
Neural Network	AI other			

Notes: New keywords compared to Van Roy et al. (2020, Table 2) classification are highlighted in grey.

(Customized) OECD Envtech classification, IPC and CPC codes

- ENVIRONMENTAL MANAGEMENT . AIR POLLUTION ABATEMENT WATER POLILITION ABATEMENT WASTE MANAGEMENT ○ SOIL REMEDIATION ENVIRONMENTAL MONITORING WATER-RELATED ADAPTATION TECHNOLOGIES CLIMATE CHANGE MITIGATION technologies related to ENERGY generation, transmission or distribution 4.1. RENEWABLE ENERGY GENERATION 4.2. ENERGY GENERATION FROM FUELS OF NON-FOSSIL ORIGIN 4.3. COMBUSTION TECHNOLOGIES WITH MITIGATION POTENTIAL (e.g. using fossil fuels, biomass, waste, etc.) 4.4 NUCLEAR ENERGY 4.5. EFFICIENCY IN ELECTRICAL POWER GENERATION, TRANSMISSION OR DISTRIBUTION 4.6 ENABLING TECHNOLOGIES IN ENERGY SECTOR 1 4.7. OTHER ENERGY CONVERSION OR MANAGEMENT SYSTEMS REDUCING GHG EMISSIONS CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES 5.1. CO2 CAPTURE OR STORAGE (CCS) 5.2. CAPTURE OR DISPOSAL OF GREENHOUSE GASES OTHER THAN CARBON DIOXIDE (N2O, CH4, ٠ PFC, HFC, SF6) CLIMATE CHANGE MITIGATION technologies related to TRANSPORTATION CLIMATE CHANGE MITIGATION technologies related to BUILDINGS CLIMATE CHANGE MITIGATION technologies related to WASTEWATER TREATMENT OR WASTE MANAGEMENT
- CLIMATE CHANGE MITIGATION technologies in the PRODUCTION OR PROCESSING OF GOODS

Digital knowledge (word embedding - WoS corpus)

Robotics	Infrastructure	Machine Learning		Applications		
		Predictive analytics /	NLP /	Environment	Health	Industry 4.0
		Deep learning	Speech recognition			-
Control	Network	Learning	Data mining	Water	Patient	Manufacturing
Robot	Architecture	Algorithm	Content	Species	Clinical	Additive manufacturing
Sensor	Cloud	Classification	Speech	Environmental	Treatment	3D printing
Hand	Service	Features	Language	Urban	Surgery	Geometry
Motion	Communication	Training	Semantic	Soil	Disease	Fabrication
Virtual reality	Mobile	Machine learning	Text	Plant	Diagnostic	Defects
Body	Internet	Neural network	Extraction	Satellite	Cancer	Manufactured
Controller	IoT	Datasets	Representation	Remote sensing	Laparoscopic	Machining
Movement	Cloud computing	Segmentation	Speech recognition	Forest	Minimally invasive	Selective laser
Sensing	5G	ANN	Natural language	UAV	Hospital	SLM _
Arm	Protocols	Deep learning	Words	Land	Surgeons	Implants
Augmented reality	Connectivity	Support vector	Ontology	Vegetation	Therapeutic	Rapid prototyping
Localization	Edge	Time series	Topic	Climate	Breast cancer	Surface roughness
Manipulation	Node	Decision tree	Corpus	Plants	Magnetic resonance	3D printer
Orientation	Blockchain	Random forest	Documents	Spatial resolution	Robot surgery	Manufacturing process
Cameras	Mobile devices	Cross validation	Translation	Ecological	Risk factors	Material properties
Controllers	Antenna	Feature selection	Automatic speech	Land cover	Postoperative	Fused decomposition
Assistance	QOS	Convolutional neural	Sentiment analysis	Crop	Clinical practice	Tissue engineering
Kinematic	Routing	SVM -	Twitter	Agricultural	Computed tomography	Laser beam
Humanoid robot	Fog	Supervised learning	Information retrieval	Emissions	Computer assisted	Packaging

Notes: Clusters of semantically related n-grams obtained via K-means on word embedding (Word2Vec). Optimal number of clusters determined through gap statistic.

Green knowledge (word embedding - WoS corpus)

Environmental	Emissions (Air)	Green chemistry	Waste and water treatment	Energy efficiency	Biotechnology
Assessment &					
Policy					
Environmental	Concentrations	Properties	Treatment	Energy	Biofilm
Management	Levels	Formation	Concentration	System	Biofilms
Global	Pollution	Reaction	Waste	Power	Bacterial
Assessment	Emission	Particles	Removal	Heat	Biofilm_formation
Climate_change	Air_pollution	Electrochemical	Degradation	Network	Microorganisms
Strategies	Pollutants	Oxidation	Wastewater_treatment	Voltage	Proteins
Implementation	Ozone	Oxygen	Wastewater	Fuel cell	Enzymes
Sustainable	Collected	Catalyst	Organic	Load	Organisms
Scenarios	PM	Solid	Compounds	Electrical	Antimicrobial
Framework	Atmospheric	Adsorption	Treated	Battery	Cultures
Policy	PM2.5	Electrode	Separation	Grid	Tissue
Impacts	Air quality	Synthesis	Treatments	Building	Genetic
Project	Contamination	Electrodes	Effluent	Energy consumption	Diseases
Measures	PM10	Membranes	Organic matter	Solar	Fungal
European	Trends	Catalysts	Recycling	Electric	Colonization
EU	Pollutant	Deposition	Waters	Heating	Microbiological
Indicators	NO2	Anode	Anaerobic	Batteries	Pathogen
Scenario	Particulate_matter	Electrolyte	Fermentation	Cooling	Skin
Challenges	Mortality -	Reactions	Organic_material	Networks	Yeast
Policies	Environmental monitoring	Catalytic	Filtration	Converter	Fungi

Notes: Clusters of semantically related n-grams obtained via K-means on word embedding (Word2Vec). Optimal number of clusters determined through gap statistic.