Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	000000	000000	00

Weighting and comparison robustness with composite indicators

Suman Seth (with James Foster & Mark McGillivray) University of Leeds and OPHI, University of Oxford

Joint Research Centre, European Commission

June 10, 2021

Weights, Robustness & Composite Indicators

• • 3 • •

Introduction	Notation	Robustness	Illustration	Conclusion
•000	000	0000000	000000	00
Motivation				

One can hardly open a newspaper without finding a reference to an international index (Høyland, Moene, and Willumsen 2012)

3

イロト 不得下 イヨト イヨト

Introduction	Notation	Robustness	Illustration	Conclusion
•000	000	0000000	000000	00
Motivation				

One can hardly open a newspaper without finding a reference to an international index (Høyland, Moene, and Willumsen 2012)

- ► Examples abound:
 - ► Human Development Index (UNDP)
 - ▶ Ease of Doing Business Index (World Bank)
 - ► Environmental Sustainability Index (WEF)
 - ▶ Index of Economic Freedom (Heritage Foundation)
 - ► Global Peace Index (Vision of Humanity)
 - ► Child Well-being Index (UNICEF)

▶ Handbook on constructing composite indicators (JRC and OECD 2008)

・ロット 全部 とうせい きゅう

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	00
Motivation				

▶ Issues in multidimensional measurement:

- ► Aggregate the indicators or not
- ▶ Capture joint distribution or not
- ▶ Sophisticated multidimensional indices and composite indicators

э

・ロト ・回ト ・ヨト ・ヨト

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	00
Motivation				

▶ Issues in multidimensional measurement:

- ► Aggregate the indicators or not
- ▶ Capture joint distribution or not
- ▶ Sophisticated multidimensional indices and composite indicators
- ► Composite indices as 'mashups' (Ravallion 2011)
 - ▶ Contains large number of moving parts, that a producer is free to set
 - ▶ Clearer warning signs are needed for users

イロト イヨト イヨト

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	00
Motivation				

▶ Issues in multidimensional measurement:

- ► Aggregate the indicators or not
- ▶ Capture joint distribution or not
- ▶ Sophisticated multidimensional indices and composite indicators
- ► Composite indices as 'mashups' (Ravallion 2011)
 - ▶ Contains large number of moving parts, that a producer is free to set
 - ▶ Clearer warning signs are needed for users
- ► A key moving part is the component weights

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	00
Motivation				

- ▶ Implications for interpretation of composite indices?
 - ▶ Questions the veracity of index rankings

E nar

Introduction	Notation 000	Robustness	Illustration	Conclusion 00
Motivation				

- ▶ Implications for interpretation of composite indices?
 - ▶ Questions the veracity of index rankings
- ▶ This uncertainty has been acknowledged in literature
 - ► Cahill (2005); Saisana et al. (2005); Nardo et al. (2008); Cherchye et al. (2008a,b); Foster et al. (2009, 2012, 2013); Permanyer (2011); Zheng and Zheng (2015); Seth and McGillivray (2018)

Introduction	Notation	Robustness	Illustration	Conclusion
Motivation				

- ▶ Implications for interpretation of composite indices?
 - ▶ Questions the veracity of index rankings
- ▶ This uncertainty has been acknowledged in literature
 - ► Cahill (2005); Saisana et al. (2005); Nardo et al. (2008); Cherchye et al. (2008a,b); Foster et al. (2009, 2012, 2013); Permanyer (2011); Zheng and Zheng (2015); Seth and McGillivray (2018)
 - ► Instead of replacing equal weights, advocate tests for robustness of rankings to a set of alternative weights (also broader sensitivity analyses)

Introduction	Notation	Robustness	Illustration	Conclusion
000•	000	0000000	000000	00
Today's Preser	ntation			

▶ Draws from

- ▶ Foster JE, McGillivray M, Seth S (2009) Rank robustness of composite indices. OPHI Working paper 26, University of Oxford
- ▶ Foster JE, McGillivray M, Seth S (2013) Composite indices: Rank robustness, statistical association and redundancy. Econometric Reviews 32:35–56
- ▶ Seth S, McGillivray M (2018) Composite indices, alternative weights, and comparison robustness. Social Choice and Welfare. 51:657–679

► A gap in the literature

► Lack of appropriate normative framework for selecting such a set of alternative weights

イロト 不得下 イヨト イヨト

Introduction	Notation	Robustness	Illustration	Conclusion
0000	●00	0000000	000000	00
Notation				

\blacktriangleright D: A fixed number of dimensions

Introduction	Notation	Robustness	Illustration	Conclusion
0000	●00	0000000	000000	00
Notation				

- \blacktriangleright D: A fixed number of dimensions
- \blacktriangleright *x*: A performance vector
- ▶ \mathcal{X} : Non-empty set of all performance vectors

э.

Introduction	Notation	Robustness	Illustration	Conclusion
0000	●00	0000000	000000	00
Notation				

- \blacktriangleright D: A fixed number of dimensions
- \blacktriangleright *x*: A performance vector
- ▶ \mathcal{X} : Non-empty set of all performance vectors
- *w_d*: Relative weight assigned to the *dth* dimension
 w_d ≥ 0 for all *d* and ∑^D_{d=1} *w_d* = 1

Introduction	Notation	Robustness	Illustration	Conclusion
0000	●00	0000000	000000	00
Notation				

- ▶ D: A fixed number of dimensions
- \blacktriangleright *x*: A performance vector
- ▶ \mathcal{X} : Non-empty set of all performance vectors
- *w_d*: Relative weight assigned to the *d*th dimension
 w_d ≥ 0 for all *d* and ∑^D_{d=1} *w_d* = 1
- ▶ w: A *d*-dimensional weight vector
- \blacktriangleright \mathcal{W} : Set of all possible weight vectors

- 34

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	000000	000000	00

• $C(x;w) = \sum_{d=1}^{D} w_d x_d$: Composite index

▶ x and w are elements in \mathcal{X} and \mathcal{W} , respectively

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	00

• $C(x;w) = \sum_{d=1}^{D} w_d x_d$: Composite index

- ▶ x and w are elements in \mathcal{X} and \mathcal{W} , respectively
- ► C(x; w⁰): Composite index at the initial weights
 ► w⁰: Initial weighting vector

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	00

• $C(x;w) = \sum_{d=1}^{D} w_d x_d$: Composite index

- ▶ x and w are elements in \mathcal{X} and \mathcal{W} , respectively
- C(x; w⁰): Composite index at the initial weights
 w⁰: Initial weighting vector
- ► $C(y; w^0) \ge C(x; w^0)$: Performance vector y has equal or higher composite index value than x at w_0 (y C_0 x)

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	00

• $C(x;w) = \sum_{d=1}^{D} w_d x_d$: Composite index

- ▶ x and w are elements in \mathcal{X} and \mathcal{W} , respectively
- ► C(x; w⁰): Composite index at the initial weights
 ► w⁰: Initial weighting vector
- ► $C(y; w^0) \ge C(x; w^0)$: Performance vector y has equal or higher composite index value than x at w_0 (y C_0 x)

• Comparison $y \ C_0 \ x$ is robust with respect to a set of alternative weights Δ if and only if $C(y; w) \ge C(x; w)$ for all weights in Δ (Foster et al. 2009, 2013)

イロン 不得 とうき イロン 一日

▶ Permanyer (2011): Did not propose particular set

- ► Foster et al. (2013): ε -contamination model
- ► Zheng and Zheng (2015): $\Delta = W$ (entire simplex)

э

イロト イボト イヨト イヨト

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	•000000	000000	oo
Determining a	Set of Altern	native Weights	(Uniform	bounds)

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	•000000	000000	00
Determining a	Set of Altern	native Weights	(Uniform be	ounds)

▶ Should not be lower than a given α , where $0 \le \alpha < 1/D$)

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	•000000	000000	00
Determining a	Set of Altern	ative Weights (Uniform bo	unds)

- ▶ Should not be lower than a given α , where $0 \le \alpha < 1/D$)
- ▶ Should not be higher than a given β , where $1/D < \beta \leq 1$]

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	•000000	000000	00
Determining a	Set of Altern	ative Weights (Uniform l	bounds)

- ▶ Should not be lower than a given α , where $0 \le \alpha < 1/D$)
- ▶ Should not be higher than a given β , where $1/D < \beta \leq 1$]
- ▶ So, Δ is a set of weights with $\alpha \leq w_d \leq \beta$ for all d

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	•000000	000000	oo
Determining a	Set of Altern	ative Weights (Uniform b	oounds)

- ▶ Should not be lower than a given α , where $0 \le \alpha < 1/D$)
- ▶ Should not be higher than a given β , where $1/D < \beta \leq 1$]
- ▶ So, Δ is a set of weights with $\alpha \leq w_d \leq \beta$ for all d

▶ It turns out that Δ is bounded and is a convex hull of a finite number of weighting vectors

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	•000000	000000	oo
Determining a	Set of Altern	ative Weights (Uniform b	oounds)

- ▶ Should not be lower than a given α , where $0 \le \alpha < 1/D$)
- ▶ Should not be higher than a given β , where $1/D < \beta \leq 1$]
- ▶ So, Δ is a set of weights with $\alpha \leq w_d \leq \beta$ for all d

▶ It turns out that Δ is bounded and is a convex hull of a finite number of weighting vectors

▶ How should we obtain these finite number of weighting vectors?

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	•000000	000000	oo
Determining a	Set of Altern	ative Weights (Uniform b	oounds)

- ▶ Should not be lower than a given α , where $0 \le \alpha < 1/D$)
- ▶ Should not be higher than a given β , where $1/D < \beta \leq 1$]
- ▶ So, Δ is a set of weights with $\alpha \leq w_d \leq \beta$ for all d
- ▶ It turns out that Δ is bounded and is a convex hull of a finite number of weighting vectors
- ▶ How should we obtain these finite number of weighting vectors?
 - ▶ Answer can be found resorting to majorization theory

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	•000000	000000	00
Determining a	Set of Altern	ative Weights (Uniform be	ounds)

- ▶ Should not be lower than a given α , where $0 \le \alpha < 1/D$)
- ▶ Should not be higher than a given β , where $1/D < \beta \le 1$]
- ▶ So, Δ is a set of weights with $\alpha \leq w_d \leq \beta$ for all d
- ▶ It turns out that Δ is bounded and is a convex hull of a finite number of weighting vectors
- ▶ How should we obtain these finite number of weighting vectors?
 - ▶ Answer can be found resorting to majorization theory
 - ▶ Δ is convex hull of unique permutations of the most unequal weighting vector $\bar{w} \in \Delta$

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0●00000	000000	00
Example 1: Δ_{i}	1			

• Suppose,
$$D = 3$$
, $\alpha = 1/6$ and $\beta = 1/2$

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	000000	000000	00
Example 1: Δ_1	L			

• Suppose,
$$D = 3$$
, $\alpha = 1/6$ and $\beta = 1/2$

► Then Δ_1 is a convex hull of six permutations of $\overline{w}^1 = (1/2, 1/3, 1/6)$: (v_1, \ldots, v_6)

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	000000	000000	00
Example 1: Δ_1	L			

• Suppose,
$$D = 3$$
, $\alpha = 1/6$ and $\beta = 1/2$

• Then Δ_1 is a convex hull of six permutations of $\overline{w}^1 = (1/2, 1/3, 1/6)$: (v_1, \ldots, v_6)

э

・ロト ・四ト ・ヨト ・ヨト

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	000000	000000	00
Example 2: Δ	2			

• Suppose, D = 3 and $\alpha = 1/6$ (no restriction on β)

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	000000	000000	00
Example 2: Δ	2			

- Suppose, D = 3 and $\alpha = 1/6$ (no restriction on β)
- ► Then Δ_2 is a convex hull of three permutations of $\overline{w}^2 = (1/6, 1/6, 2/3)$: (v_1, v_2, v_3)

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	000000	000000	00
Example 2: Δ_2	2			

- Suppose, D = 3 and $\alpha = 1/6$ (no restriction on β)
- ► Then Δ_2 is a convex hull of three permutations of $\overline{w}^2 = (1/6, 1/6, 2/3)$: (v_1, v_2, v_3)

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	00
Example 3: Δ_3	3			

▶ Suppose, D = 3 and $\beta = 2/5$ (no restriction on α)

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	00
Example 3: Δ_{Ξ}	}			

- Suppose, D = 3 and $\beta = 2/5$ (no restriction on α)
- ► Then Δ_3 is a convex hull of three permutations of $\overline{w}^3 = (2/5, 2/5, 1/5)$: (v_1, v_2, v_3)

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	00
Example 3: Δ_3	}			

- Suppose, D = 3 and $\beta = 2/5$ (no restriction on α)
- ► Then Δ_3 is a convex hull of three permutations of $\overline{w}^3 = (2/5, 2/5, 1/5)$: (v_1, v_2, v_3)

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	00
General Result	for $D \ge 2$ D	imensions		

Seth and McGillivray (2018) present a mechanism for obtaining the unique number of vertices and the vertices themselves when α and β are given for any arbitrary number of indicators

イロト イポト イヨト イヨト

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	00
General Result	for $D \ge 2$ D	imensions		

- Seth and McGillivray (2018) present a mechanism for obtaining the unique number of vertices and the vertices themselves when α and β are given for any arbitrary number of indicators
- A comparison $y \ C_0 x$ is robust with respect to Δ , when $C(y;w) \ge C(x;w)$ at the \overline{D} unique permutations $v_1, \ldots, v_{\overline{D}}$ of \overline{w}

- 34

イロト イヨト イヨト

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	00
General Result	for $D \ge 2$ D	imensions		

- Seth and McGillivray (2018) present a mechanism for obtaining the unique number of vertices and the vertices themselves when α and β are given for any arbitrary number of indicators
- A comparison $y \ C_0 x$ is robust with respect to Δ , when $C(y;w) \ge C(x;w)$ at the \overline{D} unique permutations $v_1, \ldots, v_{\overline{D}}$ of \overline{w}
- ► This result is for uniform bounds, but what happens when bounds for different indicators differ or have additional restrictions?

イロト イヨト イヨト

- Seth and McGillivray (2018) present a mechanism for obtaining the unique number of vertices and the vertices themselves when α and β are given for any arbitrary number of indicators
- A comparison $y \ C_0 x$ is robust with respect to Δ , when $C(y;w) \ge C(x;w)$ at the \overline{D} unique permutations $v_1, \ldots, v_{\overline{D}}$ of \overline{w}
- ► This result is for uniform bounds, but what happens when bounds for different indicators differ or have additional restrictions?
- ► Examples

1 Suppose, D = 3, $\alpha = 1/6$, $\beta = 1/2$ and additionally $w_1 \le w_2 \le w_3$

- Seth and McGillivray (2018) present a mechanism for obtaining the unique number of vertices and the vertices themselves when α and β are given for any arbitrary number of indicators
- A comparison $y \ C_0 x$ is robust with respect to Δ , when $C(y;w) \ge C(x;w)$ at the \overline{D} unique permutations $v_1, \ldots, v_{\overline{D}}$ of \overline{w}
- ► This result is for uniform bounds, but what happens when bounds for different indicators differ or have additional restrictions?
- ► Examples
 - **1** Suppose, D = 3, $\alpha = 1/6$, $\beta = 1/2$ and additionally $w_1 \le w_2 \le w_3$ **2** Suppose, D = 3, $0.1 \le w_1 \le 0.4$, $0.25 \le w_2 \le 0.45$ and $0.3 \le w_3 \le 0.7$

イロト イボト イヨト イヨト

500

Vertices: $v_1^* = (1/6, 5/12, 5/12)$ $v_2^* = (1/4, 1/4, 1/2)$ $v_3^* = (1/3, 1/3, 1/3)$ $v_4^* = (1/6, 1/3, 1/2)$

 Seth

Weights, Robustness & Composite Indicators

13 / 22

- 31

イロト イヨト イヨト

Vertices:

 $\begin{array}{l} v_1^{**} = (0.40, 0.25, 0.35) \\ v_2^{**} = (0.40, 0.30, 0.30) \\ v_3^{**} = (0.25, 0.45, 0.30) \\ v_4^{**} = (0.10, 0.45, 0.45) \\ v_5^{**} = (0.10, 0.25, 0.65) \end{array}$

 Seth

Weights, Robustness & Composite Indicators

14 / 22

э

イロト イボト イヨト イヨト

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	000000	00000	00

Robustness of Pair-wise HDI Comparisons

- ► A number of studies have questioned equal weights and analysed the robustness of HDI comparisons
 - ► Kelley (1991): argued for higher weight on income, but acknowledged difficulty
 - ▶ Ravallion (2011): questioned why weights did not evolve in 20 years since 1990

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	000000	●00000	00

Robustness of Pair-wise HDI Comparisons

- ► A number of studies have questioned equal weights and analysed the robustness of HDI comparisons
 - ► Kelley (1991): argued for higher weight on income, but acknowledged difficulty
 - ► Ravallion (2011): questioned why weights did not evolve in 20 years since 1990
 - ▶ Cahill (2005): six alternative weighing schemes yielded similar ranking
 - ► Cherchye et al. (2008): 75% pair-wise comparisons in 2002 not robust (subject to alternative normalizations, aggregation methods, and weights)
 - ► Foster et al. (2009): 70% pair-wise comparisons fully robust in 1998 and 2004
 - ► Zheng and Zheng (2015): 7 of the 45 pair-wise comparisons (among top 10) were robust in 2014

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	000000	00000	00

- ► How robust are inter-temporal changes in the Human Development Index?
 - ► We study the period 1980-2013, selecting data for every five years: 1980, 1985, 1990, 2000, 2005, 2010, 2013 (except 1995)

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	000000	00000	00

- ► How robust are inter-temporal changes in the Human Development Index?
 - ► We study the period 1980-2013, selecting data for every five years: 1980, 1985, 1990, 2000, 2005, 2010, 2013 (except 1995)
- ► Formulation
 - Arithmetic mean: $HDI_A = \frac{1}{3} \sum_{d=1}^{3} w_d x_d$
 - Geometric mean: $HDI_G = \prod_{d=1}^3 x_d^{1/3}$

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	000000	00000	00

- ► How robust are inter-temporal changes in the Human Development Index?
 - ► We study the period 1980-2013, selecting data for every five years: 1980, 1985, 1990, 2000, 2005, 2010, 2013 (except 1995)
- ► Formulation
 - Arithmetic mean: $HDI_A = \frac{1}{3} \sum_{d=1}^{3} w_d x_d$
 - Geometric mean: $HDI_G = \prod_{d=1}^{3} x_d^{1/3}$
 - \blacktriangleright We take logarithmic transformation of HDI_G form

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	000000	00000	00

- ► How robust are inter-temporal changes in the Human Development Index?
 - ► We study the period 1980-2013, selecting data for every five years: 1980, 1985, 1990, 2000, 2005, 2010, 2013 (except 1995)
- ► Formulation
 - Arithmetic mean: $HDI_A = \frac{1}{3} \sum_{d=1}^{3} w_d x_d$
 - Geometric mean: $HDI_G = \prod_{d=1}^3 x_d^{1/3}$
 - \blacktriangleright We take logarithmic transformation of HDI_G form
- ► Data for all component indices were available for 123 countries (UNDP website)

 Seth

э

 Seth

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	oo
Robust	Changes in .	HDI_A and HDI_G	over Time	

▶ How robust were the changes in HDIs over time?

E 990

イロト イロト イヨト イヨト

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	oo
Robust	Changes in HDI	$_{4}$ and HDI_{0}	g over Time	

▶ How robust were the changes in HDIs over time?

▶ For this illustration, we assume $\alpha = 0.1$ and $\beta = 0.75$

э

イロト イロト イヨト イヨト

				00
Introduction	Notation	Robustness	Illustration	Conclusion

Robust Changes in HDI_A and HDI_G over Time

▶ How robust were the changes in HDIs over time?

▶ For this illustration, we assume $\alpha = 0.1$ and $\beta = 0.75$

	Change in HDI_A					Change	in HDI_G	
Time Period	Increase	Robust	Decrease	Robust	Increase	Robust	Decrease	Robust
1980 - 85	111	81	12	1	116	83	7	1
1985 - 90	106	81	17	5	108	87	15	5
1990-00	110	101	13	1	112	100	11	1
2000 - 05	117	109	6	0	116	107	7	0
2005 - 10	121	110	2	0	122	108	1	0
2010 - 13	113	99	10	0	113	99	10	0

Source: Author computations using UNDP data.

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	0000€0	oo
Robust	Changes for a Nu	umber of Peri	ods	

▶ Of the robust changes, how many were robust across all periods?

Introduction 0000	Notation 000	Robus 00000	tness 00	Illustration 000000	Conclusion 00

Robust Changes for a Number of Periods

▶ Of the robust changes, how many were robust across all periods?

	Change i	Change in HDI_A		in HDI_G
Number	Number of	Number	Number	Number
of Time	Robust	of Robust	of Robust	of Robust
Periods	Increases	Decreases	Increases	Decreases
6	36	0	38	0
5	37	0	35	0
4	36	0	35	0
3	9	0	12	0
2	4	1	2	1
1	1	5	1	5
0	0	117	0	117
Total	123	123	123	123

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	00
		1		

Robust Changes within Geographic Regions

▶ Do the number of robust changes vary across geographic regions?

э

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	000000	000000	00

Robust Changes within Geographic Regions

▶ Do the number of robust changes vary across geographic regions?

Coorrectio Dorion	Number	Robust Change in All Six Periods			
Geographic Region	Countries	HDI_A	Share (%)	HDI_G	Share (%)
Arab States	13	3	23.1	4	30.8
East Asia and the Pacific	17	9	52.9	8	47.1
Europe and Central Asia	27	9	33.3	9	33.3
Latin America & the Caribbean	25	5	20.0	6	24.0
North America and Oceania	4	3	75.0	3	75.0
Sub-Saharan Africa	30	2	6.7	3	10.0
South Asia	7	5	71.4	5	71.4
Total	123	36	29.3	38	30.9

Source: Author computations using UNDP data.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Introduction	Notation	Robustness	Illustration	Conclusion $\bullet 0$
0000	000	0000000	000000	
Concluding Re	emarks			

▶ Unless greater care and sophistication used for composite indices, their ability to inform could be compromised

э

Introduction	Notation	Robustness	Illustration	Conclusion $\bullet 0$
0000	000	0000000	000000	
Concluding Re	emarks			

- ▶ Unless greater care and sophistication used for composite indices, their ability to inform could be compromised
- ▶ Two key objectives pursued in this paper:

• • • • • • • •

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	$\bullet 0$
Concluding Re	emarks			

- ▶ Unless greater care and sophistication used for composite indices, their ability to inform could be compromised
- ▶ Two key objectives pursued in this paper:
 - Proposed a normative framework to select a set of alternative weights for checking robustness

イロト イボト イヨト イヨト

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	$\bullet 0$
Concluding Re	emarks			

- ▶ Unless greater care and sophistication used for composite indices, their ability to inform could be compromised
- ▶ Two key objectives pursued in this paper:
 - Proposed a normative framework to select a set of alternative weights for checking robustness
 - **2** Used the framework to test the robustness of improvements of the HDI over time

イロト イボト イヨト イヨト

Introduction	Notation	Robustness	Illustration	Conclusion
0000	000	0000000	000000	$\bullet 0$
Concluding Re	emarks			

- ▶ Unless greater care and sophistication used for composite indices, their ability to inform could be compromised
- ▶ Two key objectives pursued in this paper:
 - Proposed a normative framework to select a set of alternative weights for checking robustness
 - **2** Used the framework to test the robustness of improvements of the HDI over time

▶ Proposed robustness tests should be amenable to empirical applications

イロト イポト イラト イラト

Introduction	Notation	Robustness	Illustration	Conclusion $\circ \bullet$
0000	000	0000000	000000	
Thank you				

