

Step 5 Weighting methods

18th JRC Annual training on Composite Indicators and Scoreboards

Matija Kovacic

Joint Research Centre

10 STEPS to build a Composite Indicator

Weighting in composite indicators

> Meaning of weighting:

- Relative importance of indicators/pillars/sub-pillars ("explicit importance")
- Trade-off between indicators/pillars/sub-pillars ("*implicit importance*")*

> Selecting a weighting scheme is not a simple task:

- There is no "one-size-fits-all" solution
- Weight may have a significant impact on final scores and ranks (the so-called "index problem")
- Stakeholders may have different opinions on choosing weighting scheme

> A composite is your own product: theoretical framework + transparency

Approaches to setting weights

Equal weights

> Weighting based on statistical methods

- Principal component analysis/Factor analysis
- Data envelopment analysis
- Regression approach

Weights based on public/expert opinion

- Budget allocation and Analytic hierarchy process
- Conjoint analysis

Approaches to setting weights: examples

Composite Indicator	Weighting scheme
Human Development Index	Equal weights
Multidimensional Poverty Index	Equal weights Expert opinion
Quality of Life Index	Equal weights
Better Life Index	Equal weights
Social Progress Index	Principal component analysis
Corruption Perception Index	Equal weights
Technological Achievement Index	Expert opinion
The Cultural and Creative Cities Monitor	Expert opinion
Rule of Law Index	Equal weights Expert opinion
Environmental Performance Index	Expert opinion
Gender Equality Index	Expert opinion
ICT 2015 Development Index	Principal component analysis

Equal weighting

> Equal weighting is *the most common* scheme appearing in composite indicators

- > **Justifications** of choosing equal weights:
- Simple and easy to communicate
- No à priori knowledge and no clear reference about the importance of the elements
- No agreement between stakeholders
- *"Problems" with statistical approaches*

However, equal weighting ...

- does not mean not distributing weights at all
- does not mean equal "contribution" of the indicators to the composite

Example: European Skills Index

Source: European Skills Index (2020), Cedefop.

7 JRC-COIN © | Step 5: Weighting methods

measures your

to the IDEAL

country's distance

identifies areas for

IMPROVEMENT

Equal Weights

	Pearson			
	Correlation			
Pillars	Coef	ficient R^2		
Skills Development	0.80	0.64		
Skills Activation	0.81	0.66		
Skills Matching	0.64	0.41		

Adjusted Weights

	Pearson	
	Correlat	ion
Pillars	Coeffici	ent R^2
Skills Development	0.77	0.59
Skills Activation	0.76	0.58
Skills Matching	0.71	0.50

Principal component analysis (PCA)

Objective: find a set of weights which, combined with the corresponding indicators, explains most of the variance

> These combinations (averages) are called **principal components (PC)**:

 $PC_{1} = C_{11}X_{1} + C_{21}X_{2} + \dots + C_{n1}X_{n}$ $PC_{2} = C_{12}X_{1} + C_{22}X_{2} + \dots + C_{n2}X_{n}$

- Each principal component is a new variable computed as a linear combination of the original (standardized) variables
- Choose the component (*i.e.*, combination of coefficients) that explains most of the observed variance

How should we choose?

Several methods exist. The **3** most common are:

Kaiser–Guttman "Eigenvalues greater than one" criterion (Guttman,1954; Kaiser, 1960): select all components with eigenvalues greater than 1 (or 0.9)

Certain percentage of explained variance: for example >60, 70%, 80%,...

Cattell's scree test (Cattell, 1966) "Above the elbow" approach

> **Objective:** one Principal Component (one-dim solution) – single latent phenomenon

Weights based on PCA

The coefficients (standardised) of the first principal component are used as weights:

Positive aspects:

- Empirical and objective option for weight selection,
- Maximizes the variance of the units.
- Potential disadvantages:
- Assigns lower weights to dimensions that are poorly correlated,
- Less straightforward and transparent.

Example 1: Social Progress Index (SPI)

Basic Human Needs

Nutrition & Basic Medical Care

Undernourishment Maternal mortality rate Child mortality rate Child stunting Deaths from infectious diseases

Water & Sanitation

Access to at least basic drinking water Access to piped water Access to at least basic sanitation facilities Rural open defecation

Shelter

Access to electricity Quality of electricity supply Household air pollution attributable deaths

Personal Safety

Homicide rate Political killings and torture Perceived criminality Traffic deaths

Foundations of Wellbeing

Access to Basic Knowledge Adult literacy rate Primary school enrollment Secondary school enrollment Gender parity in secondary enrollment Access to quality education

Access to Information & Communications

Mobile telephone subscriptions Internet users Participation in online governance Access to independent media

Health & Wellness

Life expectancy at 60 Premature deaths from non-communicable diseases Access to essential health services Access to quality healthcare

Environmental Quality

Outdoor air pollution attributable deaths Wastewater treatment Greenhouse gas emissions Biome protection

Opportunity

Personal Rights Political rights Freedom of expression Freedom of religion Access to justice Property rights for women

Personal Freedom & Choice

Vulnerable employment Early marriage Satisfied demand for contraception Corruption

Inclusiveness

Acceptance of gays and lesbians Discrimination and violence against minorities Equality of political power by gender Equality of political power by socioeconomic position Equality of political power by social group

Access to Advanced Education

Years of tertiary schooling Women's average years in school Globally ranked universities Percent of tertiary students enrolled in globally ranked universities

Illustrative example: PCA analysis for the indicators within the Environmental Quality component

Example 1: Social Progress Index (SPI)

Co	mponent	Eigenvalue	Variance (%)	Cumulative variance (%)
	PC1	2.28	57.11	57.11
	PC2	0.87	21.81	78.92
	PC3	0.51	12.80	91.71
	PC4	0.33	8.29	100

Total variance explained

Pearson correlation coefficient between

indicators and principal components

Indicators	PC1	PC2	PC3	PC4		PC1norm
Outdoor air pollution attributable deaths	0.88	-0.12	-0.11	-0.45	Normaliza ta unity	0.30
Wastewater treatment	0.83	-0.13	-0.44	0.32		0.28
Greenhouse gas emissions	0.78	-0.26	0.55	0.16		0.26
Biome protection	0.47	0.88	0.08	0.03		0.16

PC1 = 0.88 X1 + 0.83 X2 + 0.78 X3 + 0.47 X4

 $PC_{1norm} = 0.30 X_{1} + 0.28 X_{2} + 0.26 X_{3} + 0.16 X_{4}$

Example 1: Social Progress Index (SPI)

Comparing weighting schemes Environmental Quality (EQ) Component

Comparing weighting schemes

Conclusion: very similar ranking (in this case both may work well) – does not mean they are equivalent

Example 2: European Skills Index (SPI)

Total variance explained

Co	mponent Eigenvalı		Variance	Cumulative variance
	PC1	1.75	58	58
	PC2	0.88	29	88
	PC3	0.37	12	100

Pearson correlation coefficient

Pillars	PC1	PC2	PC3
Skills Development	0.88	-0.16	-0.44
Skills Activation	0.84	-0.36	0.41
Skills Matching	0.51	0.85	0.09

Example 2: European Skills Index (SPI)

Equal Weights

	Pearson	
	Correlation	
Pillars	Coefficient	R^2
Skills Development	0.80	0.64
Skills Activation	0.81	0.66
Skills Matching	0.64	0.41

PCA Weights

	Pearson	
	Correlation	
Pillars	Coefficient	R^2
Skills Development	0.84	0.70
Skills Activation	0.87	0.75
Skills Matching	0.52	0.27

- With PCA weighting the index becomes even more unbalanced with respect to equal weighting scheme
- > PCA "*punishes*" the indicators which are poorly correlated with the others
- However, these indicators, from a conceptual point of view, may be very important and should have a higher weight => conceptual framework

Expert opinion

There are two typical methods to elicit views from experts: budget allocation (BAP) and analytic hierarchy process (AHP)

- In BAP a panel of experts is given N points to distribute to the indicators, or groups of indicators (sub-pillars/pillars) - an average of the experts' choices is used as a weight
- Critical issues: selection of experts (number and expertise) and the total number of indicators to be evaluated:
- Experts should **not** be specialists for individual indicators, rather for the given subindex (larger "field" expertise)
- not more than **10** indicators risk of "circular thinking"

BAP - Example 1: Multidimensional poverty assessment tool (MPAT)

Selection of Experts:

- 42 experts from 10 countries and 28 organizations (mainly UN agencies and universities)
- selection based on expertise on poverty assessment tools in developing countries

Purpose: Eliciting weights to be assigned to the subcomponents of each of the dimensions

BAP - Example 1: MPAT

Sub1.1	43%	
Sub1.2	32%	Food and
Sub1.3	25%	
Sub2.1	29%	Sub
Sub2.2	38%	Sub
Sub2.3	33%	Sub
Sub3.1	38%	Sub
Sub3.2	34%	Sub
Sub3.3	28%	Sub
Sub4.1	38%	Sub
Sub4.2	26%	Sub
Sub4.3	36%	Sub
Sub5.1	38%	Cub
Sub5.2	33%	
Sub5.3	29%	
Sub6.1	31%	
Sub6.2	33%	Education
Sub6.3	36%	
Sub7.1	36%	-
Sub7.2	24%	
Sub7.3	20%	
Sub7.4	20%	

Food and nutrition

Sub8.1	39%	
Sub8.2	33%	
Sub8.3	28%	
Sub9.1	33%	_
Sub9.2	34%	t c
Sub9.3	33%	
Sub10.1	31%	G
Sub10.2	36%	e
Sub10.3	33%	

Exposure to shocks Gender and social equality

- Different distributions of weights across sub-components
- Expert opinions may significantly differ
- **Example**: Indian and Chinese experts compared to the rest of the world

BAP - Diversity of expert judgements

<u>Convergence</u>: Indian experts have very similar views compared to the experts coming from the Rest of the world

But ...

BAP - Diversity of expert judgements

- <u>Divergence</u>: for 10 subcomponents Chinese experts have very different views
- <u>Caution</u> in averaging the judgements from different experts

BAP - Example 2: The Cultural and Creative Cities Monitor

BAP - Example 2: The Cultural and Creative Cities Monitor

- Selection of experts: 17 Experts 5 from European Commission, 6 from Academia, 6 from international organisations
- Experts divided in 3 groups weights assigned to the three sub-indices by each group:

Sub-index	Group 1	Group 2	Group 3	Average	Weight		
Cultural vibrancy	40	50	40	43.33	40		
Creative Economy	35	30	40	35.00	40		
Enabling Environment	25	20	20	21.7	20	\rightarrow	Enabling Environment
							Human capital & education

The experts agreed that that accessibility and governance dimensions (within the Enabling Environment sub-index) should have a minimum weight

40

15

5

Openness, tolerance, trust

Connections

Quality of governance

Analytic Hierarchy Process (AHP)

Multi-attribute decision making (MADM) method developed by Saaty (1987)

STEP 1. Question: *"Which of the two is more important?"* and *"by how much?"* on a scale ranging from **1** (equally important) to **9** (most important):

I2 results **3 times** more important than I1 (**I21 = 3**)

I1 results **5 times** more important than I3 (**I13 = 5**)

Analytic Hierarchy Process (AHP)

STEP 2. Set up a $N \times N$ matrix (M) with N being the number of indicators (in our case N = 3)

> The relative importance assigned to each pair of indicators has to be transformed in weights

STEP 3. Calculation of weights

- > Normalized column method and geometric mean method (optimal for a limited number of indicators)
- Eigenvector technique

Normalized columns method

A. sum each column

М	11	12	13
1	1	1/3	5
12	3	1	7
13	1/5	1/7	1
sum	21/5	31/21	13

B. normalized rel. weights

Μ	11	12	13
11	5/21	7/31	5/13
12	15/21	21/31	7/13
13	1/21	3/31	1/13
sum	1	1	1

C. row average

Weig	ghts
11	0.2828
12	0.6434
13	0.0738

Geometric mean method

A. original elicited

М	- 11	12	13
11	1	1/3	5
12	3	1	7
13	1/5	1/7	1

B. geometric mean (GM)

G	М
11	1.19
12	2.76
13	0.31
sum	4.25

C. normalized GM

Weights	
11	0.28
12	0.6494
13	0.0729

Analytic Hierarchy Process (AHP)

Criticism of AHP

- Inconsistency forced by 1 to 9 scale (example: if 112 = 4 and 123 = 4, then 113 should be at least 16),
- When the number of indicators is very large, AHP exerts cognitive stress on decision makers,
- New alternatives can reverse the rank of existing alternatives.

Advantages of AHP

- Simplicity of pair-wise comparisons,
- Compared to BAP, the AHP method is less prone to errors of judgement => there is a possibility to check the consistency (in each set) of judgements and for each expert.

Analytic Hierarchy Process (AHP)

STEP 4. Checking the consistency

- Consistency ratio (CR)
- Some inconsistency tolerated: CR ≤ 0.1 (10%) even though 0.2 may work as well (does not affect the weights drastically, Saaty, 1980),
- Code in R available.

- > Alternative: expert-based weights can be derived from conjoint analysis (CA)
- frequently used in marketing and consumer research,
- decompositional multivariate data analysis.

Thank you

matija.KOVACIC@ec.europa.eu | jrc-coin@ec.europa.eu

composite-indicators.jrc.ec.europa.eu

© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

