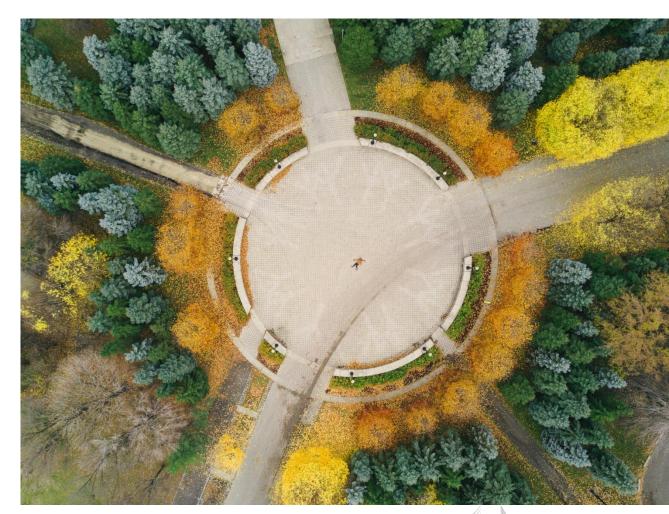


Step 6 Aggregation 18th JRC Annual training on Composite Indicators and Scoreboards

Giulio Caperna

10 STEPS to build a Composite Indicator



2 JRC-COIN © | Step 6: Aggregation

Aggregation methods

- Based on Average Values
- Based on Ranks
- Based on Pairwise comparison

Arithmetic mean

The arithmetic mean of a list of n real numbers equals:

$$\frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

This is the simplest, most obvious and most widespread aggregation method

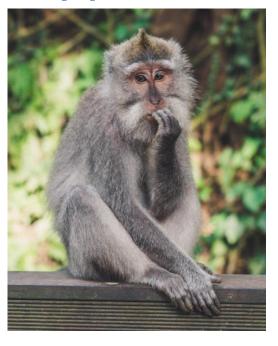
Perfect (and constant) substitutability – underperformance in one component can be perfectly compensated by equivalent overperformance in another

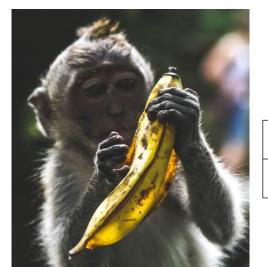
Geometric mean

The *geometric mean* of a list of *n <u>positive</u>* real numbers equals:

$$\sqrt[n]{\prod_{i=1}^{n} x_i} = \sqrt[n]{x_1 \times x_2 \times \cdots \times x_n}$$

The first "less-compensatory" option


Partial substitutability – *unbalanced performance is always penalised* by the aggregation formula when compared to arithmetic aggregation



The formula is the decision approach

Safe: 1	
Yummy: 10	
A.M.: 5.5	
G.M.: 3.2	

Safe: 5 Yummy: 5 A.M.: 5.0 G.M.: **5.0**

Safe: 9 Yummy: 2 A.M.: **5.5** G.M.: 4.2

European Commission

6 JRC-COIN © | Step 6: Aggregation

Geometric vs. Arithmetic mean: Implications

	Sufficient	Sufficient	Safe	Basic Needs	Country <i>i's</i>	Basic Needs	Country <i>i's</i>
	Food	to Drink	Sanitation	(arithmetic)	improvement	(geometric)	improvement
Country <i>i</i> (t)	10.0	8.6	1.4	6.7		4.9	

The two averages

Common features:

- Not robust to Outliers
- Normalisation
- Quantitative information needed and kept
- "Good enough" correlation structure is necessary
- Weights are interpreted as trade-offs

Differences:

- Perfect substitutability vs. partial substitutability
- Arithmetic mean is always greater than or equal to the equivalent geometric mean

Aggregation with an average

Before proceeding for a mean, check all the previous steps (normalisation, outliers, missing data, weights)

Remember: You need *quantitative* indicators

Qualitative and quantitative together

Multi-criteria performance matrix

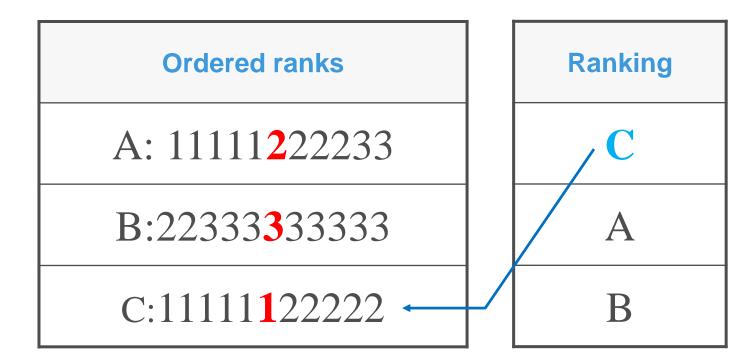
	Criterion 1	Criterion 2	Criterion 3	Criterion 4
	(/20)	(rating)	(qual.)	(Y/N)
Alternative 1	20	135	G	Yes
Alternative 2	9	156	В	Yes
Alternative 3	15	129	VG	No
Alternative 4	9	146	VB	No
Alternative 5	7	121	G	Yes
		• • •	• • •	• • •

We need some method to compare, rank or evaluate the alternatives

Methods based on ranks

Every criterion represents a voter, a point of view, and determines a complete ranking

	Criterion 1 (/20)	Criterion 2 (rating)	Criterion 3 (qual.)	Rank 1	Rank 2	Rank 3
Alternative 1	20	135	Good	1	3	2.5
Alternative 2	9	156	Bad	3.5	1	4
Alternative 3	15	129	Very Good	2	4	1
Alternative 4	9	146	Very Bad	3.5	2	5
Alternative 5	7	121	Good	5	5	2.5



Median rank

3 units: A, B, C

11 indicators/criteria

5	4	2
indicators	indicators	indicators
A	С	С
С	А	В
В	В	А

Weighted median rank

3 units: A, B, C

6 indicators/ criteria with (unequal) weights

	Ind. 1	Ind. 2	Ind. 3	Ind. 4	Ind. 5	Ind. 6
Rank	0.05	0.25	0.30	0.10	0.05	0.25
1	А	С	С	В	А	В
2	С	А	В	А	В	С
3	В	В	А	С	С	А

	Cumulative weight					
Unit	0.10	0.25	0.50	0.75		
А	1	2	3	3		
В	1	1	2	3		
С	1	1	1	2		

Methods based on pairwise comparisons

	Criterion 1 (/20)	Criterion 2 (rating)	Criterion 3 (qual.)	Criterion 4 (Y/N)	• • •
Alternative 1	20	135	G	Yes	
Alternative 2	9	156	В	Yes	
Alternative 3	15	129	VG	No	
Alternative 4	9	146	VB	No	• • •
Alternative 5	7	121	G	Yes	
			• • •	•••	• • •

Compare alternatives using the original values, all criteria simultaneously

Example: Alternative 1 is better than Alternative 5

Outranking Matrix – Concordance value

	Index					
	Ind 01	Ind 02	Ind 03	Ind04		
Orientation	-1	-1	-1	-1		
Weights	0.25	0.25	0.25	0.25		
MT	74.9	Good	205.0	14.7		
NL	75.8	Acceptable	47.9	11.6		
PL	58.9	Excellent	87.9	5.8		
PT	124.3	Very good	445.5	18.8		
RO	38.5	Very Poor	207.6	7.3		
SE	39.0	None	17.7	7.0		
SI	66.5	Outstanding	350.9	5.6		
SK	56.7	Poor	87.8	9.2		

Step 1 – Raw data, Weights & Orientation

Outranking Matrix – Concordance value

	Index					
	Ind 01	Ind 02	Ind 03	Ind04		
Orientation	-1	-1	-1	-1		
Weights	0.25	0.25	0.25	0.25		
MT	74.9	Good	205.0	14.7		
NL	75.8	Acceptable	47.9	11.6		
PL	58.9	Excellent	87.9	5.8		
PT	124.3	Very good	445.5	18.8		
RO	38.5	Very Poor	207.6	7.3		
SE	39.0	None	17.7	7.0		
SI	66.5	Outstanding	350.9	5.6		
SK	56.7	Poor	87.8	9.2		

Step 1 – Raw data & Weights & Orientation

Step 2 – Concordance value

For *n* countries, there are *n* (*n*-1) pairwise comparisons to be made

Example:	
MT versus $NL = 0.25$	
NL versus $MT = 0.75$	

Sum = 1.00

Outranking Matrix – Concordance value

	Index					
	Ind 01	Ind 02	Ind 03	Ind04		
Orientation	-1	-1	-1	-1		
Weights	0.25	0.25	0.25	0.25		
MT	74.9	Good	205.0	14.7		
NL	75.8	Acceptable	47.9	11.6		
PL	58.9	Excellent	87.9	5.8		
РТ	124.3	Very good	445.5	18.8		
RO	38.5	Very Poor	207.6	7.3		
SE	39.0	None	17.7	7.0		
SI	66.5	Outstanding	350.9	5.6		
SK	56.7	Poor	87.8	9.2		

Step 1 – Raw data & Weights & Orientation

Step 2 – Concordance value

For *n* countries, there are *n* (*n*-1) pairwise comparisons to be made

Example: MT versus PT = 1.00 PT versus MT = 0.00	
Sum = 1.00 Robust pa	air

Outranking Matrix – Construction

	МТ	NL	PL	РТ	RO	SE	SI	SK
MT	0.00	0.25	0.25	1.00	0.25	0.00	0.50	0.00
NL	0.75	0.00	0.50	1.00	0.25	0.00	0.50	0.25
PL	0.75	0.50	0.00	0.75	0.50	0.25	0.75	0.50
РТ	0.00	0.00	0.25	0.00	0.00	0.00	0.25	0.00
RO	0.75	0.75	0.50	1.00	0.00	0.25	0.75	0.75
SE	1.00	1.00	0.75	1.00	0.75	0.00	0.75	1.00
SI	0.50	0.50	0.25	0.75	0.25	0.25	0.00	0.25
SK	1.00	0.75	0.50	1.00	0.25	0.00	0.75	0.00

Step 1 – Raw data & Weights & Orientation

Step 2 – Concordance value

Step 3 – Outranking matrix

All concordance values are entered in the outranking matrix. (entries above and below the diagonal sum up to 1.0)

MT versus NL = 0.25
NL versus MT = 0.75

MT versus PT = 1.00 PT versus MT = 0.00

The Copeland Score

Victories (+1) minus Defeats (-1) (ties don't count)

Outranking	matrix
------------	--------

	МТ	NL	PL	РТ	RO	SE	SI	SK
MT	0.00	0.25	0.25	1.00	0.25	0.00	0.50	0.00
NL	0.75	0.00	0.50	1.00	0.25	0.00	0.50	0.25
PL	0.75	0.50	0.00	0.75	0.50	0.25	0.75	0.50
РТ	0.00	0.00	0.25	0.00	0.00	0.00	0.25	0.00
RO	0.75	0.75	0.50	1.00	0.00	0.25	0.75	0.75
SE	1.00	1.00	0.75	1.00	0.75	0.00	0.75	1.00
SI	0.50	0.50	0.25	0.75	0.25	0.25	0.00	0.25
SK	1.00	0.75	0.50	1.00	0.25	0.00	0.75	0.00

		Wins	Defeats	Total	Rank
-	SE	7	0	7	1
	RO				
	SK				
	PL				
	NL				
-	SI				
	МТ				
	PT				

The Copeland Score

	MT	NL	PL	PT	RO	SE	SI	SK
MT	0.00	0.25	0.25	1.00	0.25	0.00	0.50	0.00
NL	0.75	0.00	0.50	1.00	0.25	0.00	0.50	0.25
PL	0.75	0.50	0.00	0.75	0.50	0.25	0.75	0.50
PT	0.00	0.00	0.25	0.00	0.00	0.00	0.25	0.00
RO	0.75	0.75	0.50	1.00	0.00	0.25	0.75	0.75
SE	1.00	1.00	0.75	1.00	0.75	0.00	0.75	1.00
SI	0.50	0.50	0.25	0.75	0.25	0.25	0.00	0.25
SK	1.00	0.75	0.50	1.00	0.25	0.00	0.75	0.00

Outranking matrix

	Wins	Defeats	Total	Rank
SE	7	0	7	1
RO	5	1	4	2
SK	4	2	2	3
PL	3	1	2	4
NL	2	3	-1	5
SI	1	4	-3	6
МТ	1	5	-4	7
PT	0	6	-6	8

This method is in the COIN tool and the COINr package

Summary of methods on Pairwise Comparison

- Fully *non-compensatory* approach;
- only weights and orientation are required to obtain the ranking of alternatives;
- weights represent exactly the importance of the indicator;
- no impact of outliers;
- no need for data normalisation
- no need for "good" correlation structure;
- can be used both with continuous and categorical variables;
- computationally more demanding than standard averages;
- poor with small number of units;
- software available for Copeland (send an email to JRC-COIN): Excel, R, Matlab

Sources: Athanasoglou (2015), Tarjan (1972), Van Zuylen, and Williamson (2009), Munda and Nardo (2009)

Thank you

giulio.CAPERNA@ec.europa.eu | jrc-coin@ec.europa.eu

composite-indicators.jrc.ec.europa.eu

© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Suggested readings

- Arrow, K. J., and H. Raynaud, H. Social choice and multicriterion decision-making. MIT Press Books, 1.
- Athanasoglou S. (2015) Multidimensional welfare rankings under weight imprecision: a social choice perspective. Social Choice and Welfare 4(4), 719-744.
- Bartholdi III, J., Tovey, C. A., & Trick, M. A. (1989). Voting schemes for which it can be difficult to tell who won the election. Social Choice and Welfare, 6(2), 157-165.
- Kemeny, J. (1959). Mathematics without numbers. Daedalus 88: 577-591.
- Munda, G. 2008. Social Multi-Criteria Evaluation for a Sustainable Economy. Berlin Heidelberg: Springer-Verlag.
- Munda, G., Nardo, M. (2009). Non-compensatory/Non-linear composite indicatos for ranking countries: a defensible setting. Applied Economics, 41(12), 1513-1523.
- Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2), 146-160.
- Truchon, M. (1998). An extension of the Condorcet criterion and Kemeny orders. Cahier 98-15 du Centre de Recherche en Économie et Finance Appliquées.

 Van Zuylen, A., and D. Williamson (2009). Deterministic Pivoting Algorithms for Constrained Ranking and Clustering Problems. Mathematics of Operations Research, 34, 594-620
23 JRC-COIN © | Step 6: Aggregation