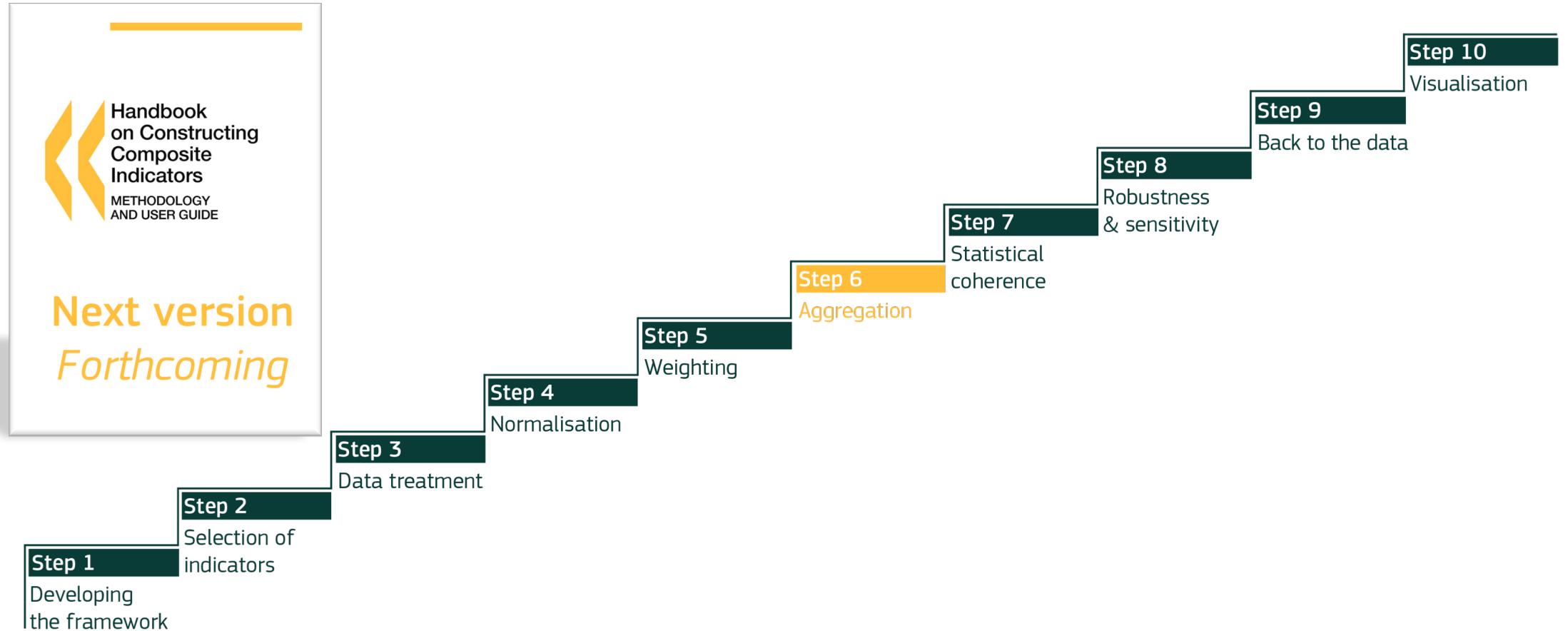


The European Commission's science and knowledge service

Joint Research Centre

Step 6: Aggregation


Marcos Domínguez-Torreiro PhD

Giulio Caperna PhD

COIN Training 2019

4-6 November, Ispra

Ten steps

Aggregation methods

- Based on Average Scores
 1. Arithmetic Mean
 2. Geometric Mean
- Based on Ranks
 3. Median rank
 4. Majority
 5. Borda's Count
- Based on Pairwise Comparisons
 6. Condorcet
 7. Kemeny
 8. Arrow – Raynaud
 9. Copeland

Aggregation methods

- Based on Average Scores
 1. Arithmetic Mean
 2. Geometric Mean

Arithmetic mean (additive aggregation)

The **arithmetic mean** of a list of n real numbers equals:

$$\frac{1}{n} \sum_{i=1}^n x_i = \frac{x_1 + x_2 + \cdots + x_n}{n}$$

This is the simplest, most obvious and most widespread aggregation method

Perfect (and constant) substitutability – *the impact on the aggregate score of a unit increase (decrease) in the level of any indicator is the same*, i.e. underperformance in one component can be perfectly compensated by equivalent overperformance in another

Arithmetic mean in CIs

The score corresponding to the 4th pillar of the GTCI index in country i is calculated as
The arithmetic average of sub-pillars 4.1 and 4.2:

Sustainability score = 37.04

Lifestyle score = 59.60

Retain pillar score = $\frac{1}{2} (37.04+59.60) = 48.32$

4	RETAIN.....	48.32	70
4.1	Sustainability	37.04	78
4.1.1	Pension system.....	37.37	56
4.1.2	Taxation	43.58	73
4.1.3	Brain retention	30.16	94
4.2	Lifestyle	59.60	64
4.2.1	Environmental performance.....	69.58	57
4.2.2	Personal safety	62.00	56
4.2.3	Physician density	14.55	78
4.2.4	Sanitation	92.27	57

INSEAD
The Business School
for the World®

A
THE ADECCO GROUP

human
capital
leadership
institute

The Global Talent Competitiveness Index
2017

Key indicator	Global	Europe	Score	Rank
Bank (int of 1M)	80	80	39.72	72
Income group	Upper middle income	Europe	44	36
Regional group	Europe	Europe	39.12	39
Population (millions)	2.89	42.46	42.46	42
GTCI 2017 Country Profile by Pillar				
	Global	Europe		
	Attract			
3	GDPW.....	48.32	70	70
3.1	Formal education	37.04	78	78
3.1.1	Primary enrollment	37.37	56	56
3.1.2	Tertiary enrollment	43.58	73	73
3.1.3	Tertiary education expenditure	30.16	94	94
3.1.4	Reading, math, science	69.58	57	57
3.1.5	Math and science achievement	62.00	56	56
3.2	Lifelong learning	14.55	78	78
3.2.1	Prevalence of learning in firms	92.27	57	57
3.2.2	Employee development	30.16	94	94
3.2.3	Use of virtual professional networks	59.60	64	64
3.2.4	Engagement	14.55	78	78
3.3	Democracy and authority	92.27	57	57
3.3.1	Personal rights	37.04	78	78
3.3.2	Use of formal social networks	48.32	70	70
3.3.3	Use of virtual professional networks	59.60	64	64
3.3.4	Empowerment	14.55	78	78
3.3.5	Democracy	92.27	57	57
4	RETAIN.....	48.32	70	70
4.1	Sustainability	37.04	78	78
4.1.1	Pension system	37.37	56	56
4.1.2	Taxation	43.58	73	73
4.1.3	Brain retention	30.16	94	94
4.2	Lifestyle	59.60	64	64
4.2.1	Environmental performance	69.58	57	57
4.2.2	Personal safety	62.00	56	56
4.2.3	Physician density	14.55	78	78
4.2.4	Sanitation	92.27	57	57
5	VOCATIONAL AND TECHNICAL SKILLS.....	43.74	70	70
5.1	First level vocational skills	43.74	70	70
5.1.1	Workers with secondary education	43.74	70	70
5.1.2	Population with secondary education	43.74	70	70
5.1.3	Workers with tertiary education	43.74	70	70
5.1.4	Population with tertiary education	43.74	70	70
5.2	Labour productivity per employee	56.67	65	65
5.3	Skills gap	77.00	50	50
5.4	Ease of finding skilled employees	49.92	50	50
5.5	Relevance of education system to the economy	58.37	50	50
5.6	Skills gap in major occupations	72.03	49	49
5.7	Skills gap in major occupations	81.82	48	48
6	GLOBAL KNOWLEDGE SKILLS.....	11.88	108	108
6.1	Global C-level skills	11.88	108	108
6.1.1	Workforce with tertiary education	26.21	79	79
6.1.2	Population with tertiary education	29.39	61	61
6.1.3	Researchers	1.82	76	76
6.1.4	Scientists and engineers	2.88	117	117
6.1.5	Quality of scientific institutions	13.16	77	77
6.2	Talent import	7.73	112	112
6.2.1	Innovation output	13.29	100	100
6.2.2	Entrepreneurship	14.64	93	93
6.2.3	Business opportunities for entrepreneurs	9.43	103	103
6.2.4	New business density	8.27	60	60

Aggregation methods

- Based on Average Scores
 1. Arithmetic Mean
 2. Geometric Mean

Geometric mean (multiplicative aggregation)

The **geometric mean** of a list of n positive real numbers equals:

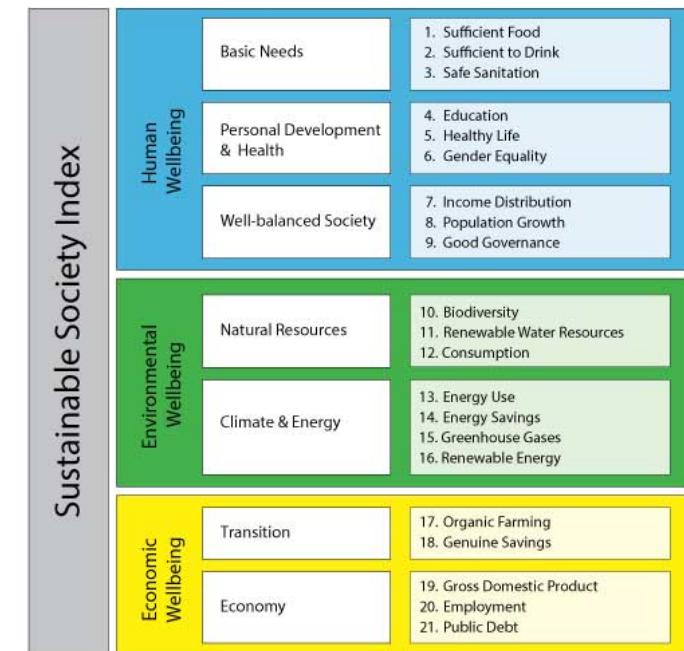
$$\sqrt[n]{\prod_{i=1}^n x_i} = \sqrt[n]{x_1 \times x_2 \times \cdots \times x_n}$$

Partial substitutability – compensation of low performance on some indicators by high performance on others is possible only partially, i.e. *unbalanced performance is always penalised* by the aggregation formula when compared to arithmetic aggregation

Geometric mean in CIs

Basic Needs indicators - Country <i>i</i>	value
% people with sufficient food	92
% people with safe drinking water	79
% people with safe sanitation	17

Sufficient Food $= \frac{92}{10} = 9.2$


Sufficient to Drink $= \frac{79}{10} = 7.9$

Safe Sanitation $= \frac{17}{10} = 1.7$

Basic Needs Pillar $= \sqrt[3]{9.2 \cdot 7.9 \cdot 1.7} = 4.98$

Framework

Rational choice and risk aversion: What would the monkey have for lunch today?" (arithmetic vs. geometric aggregation)

Safe: 1
Yummy: 10
A.M.: **5.5**
G.M.: 3.2

Safe: 5
Yummy: 5
A.M.: 5.0
G.M.: **5.0**

Arithmetic mean results in more tolerance towards extreme values (high-risk-low-taste and vice versa); therefore, if not willing to trade off very high (low) risk levels for very good (bad) taste, geometric mean can guide you to a more conservative decision!

Safe: 9
Yummy: 2
A.M.: **5.5**
G.M.: 4.2

Geometric vs. Arithmetic mean: Implications for policy making

	I.1. Sufficient Food	I.2. Sufficient to Drink	I.3. Safe Sanitation	I. Basic Needs Pillar Score (arithmetic)	Country i 's improvement in $t+1$	I. Basic Needs Pillar Score (geometric)	Country i 's improvement in $t+1$
Country i (t)	10.0	8.6	1.4	6.7		4.9	

Geometric vs. Arithmetic mean: Implications for policy making

	I.1. Sufficient Food	I.2. Sufficient to Drink	I.3. Safe Sanitation	I. Basic Needs Pillar Score (arithmetic)	Country i 's improvement in $t+1$	I. Basic Needs Pillar Score (geometric)	Country i 's improvement in $t+1$
Country i (t)	10.0	8.6	1.4	6.7		4.9	
Following year							
[a.1] Country i ($t+1$)	10.0	9.6 +1	1.4	7.0	4.5%	5.1	4.1%
[a.2] Country i ($t+1$)	10.0	8.6	2.4 +1	7.0	4.5%	5.9	20.4%
[b.1] Country i ($t+1$)	10.0	9.6 +1	0.4 -1	6.7	0%	3.4	-31.1%
[b.2] Country i ($t+1$)	10.0	7.6 -1	2.4 +1	6.7	0%	5.7	15.7%

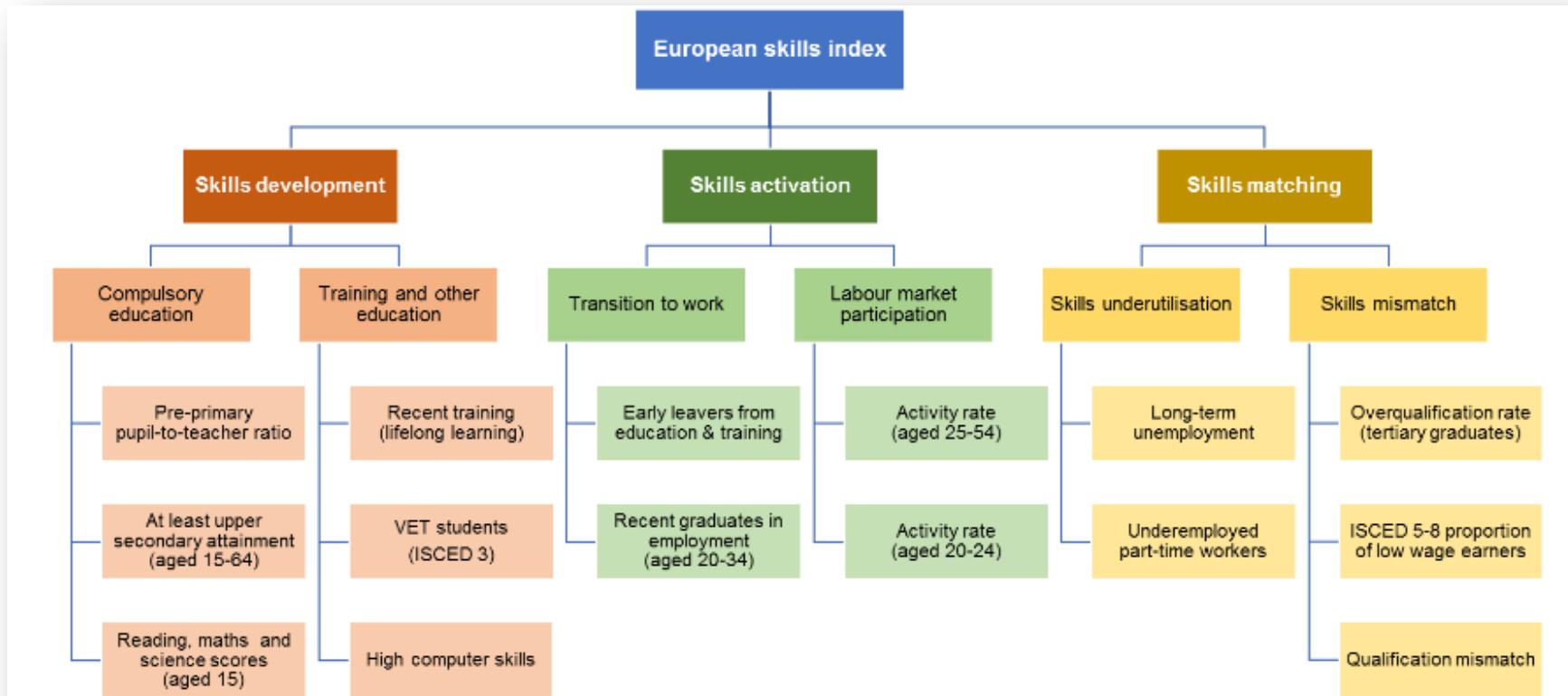
With geometric mean:

- 1) poor performance in one indicator **is not perfectly compensated** by good performance in another;
- 2) **improvements in the weaker dimensions are encouraged**;
- 3) **unbalanced situations are penalised / balance is rewarded in the aggregate score**

Note: Using unequal weights

For a sequence of positive weights w_i , with $\sum w_i=1$, the ***weighted arithmetic mean*** equals:

$$\sum_{i=1}^n w_i x_i = w_1 x_1 + w_2 x_2 + \cdots + w_n x_n$$


For a sequence of positive weights w_i , with $\sum w_i=1$, the ***weighted geometric mean*** equals:

$$\prod_{i=1}^n x_i^{w_i} = x_1^{w_1} \times x_2^{w_2} \times \cdots \times x_n^{w_n}$$

Note: Hybrid aggregation in CIs

CIs using different aggregation functions at different levels of aggregation (mixed approach)

European Skills Index (CEDEFOP)	Arithmetic average within dimensions	Geometric average across dimensions
---------------------------------	--------------------------------------	-------------------------------------

In a nutshell

Methods based on average scores share common features...

- ***Interval level (quantitative) variables*** and “***good enough correlation structure are required*** to compute meaningful averages
- ***Interval level information is kept*** during the aggregation process (i.e. output interpreted as ***quantitative scores***, not just as ordered sequence of units)
- ***Normalisation*** of indicators required prior to aggregation
- Averages ***highly influenced by outliers*** in the data
- ***Weights*** in the aggregation formulas are to be ***interpreted as trade-offs*** (i.e. how much an advantage on one indicator can offset a disadvantage on another), and not as importance coefficients (i.e. “the most important indicator is precisely the one with the highest weight”)

... but also significant differences

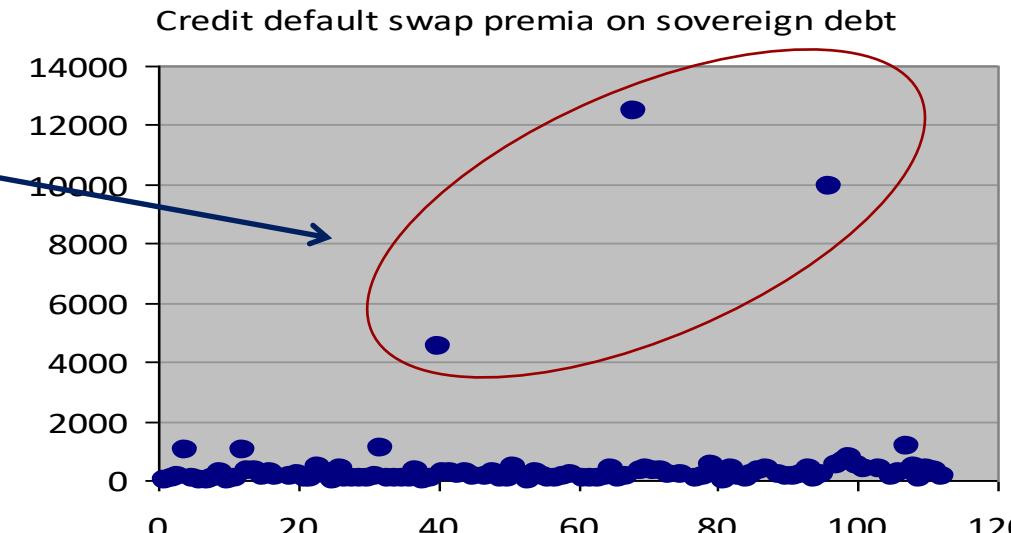
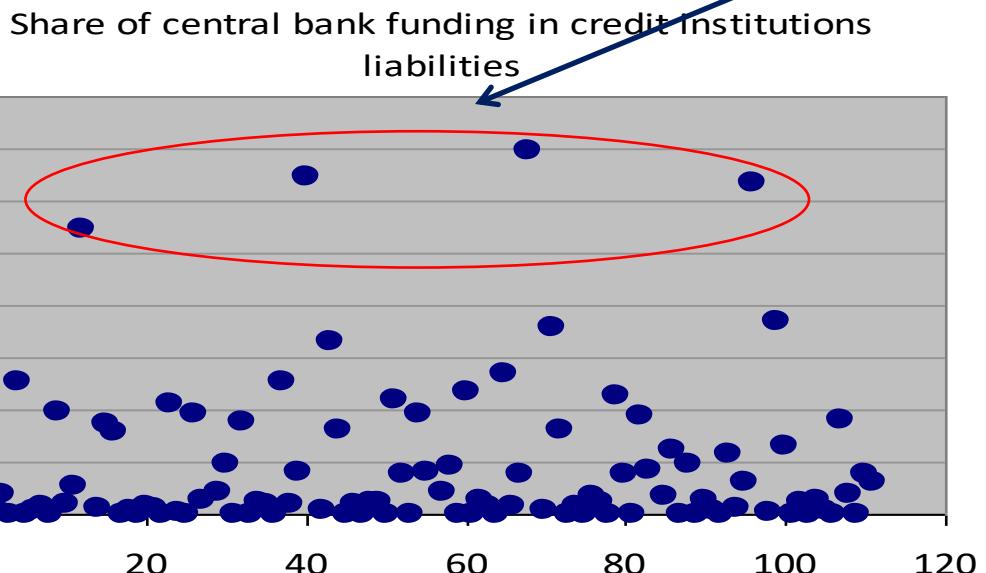
- ***Perfect (and constant) substitutability*** (arithmetic) vs. ***partial substitutability*** penalising unbalanced performance (geometric)
- ***Arithmetic mean*** is always ***greater than or equal to*** the equivalent ***geometric mean***

A word of caution regarding the use of averages

- ✓ Averages should be avoided when ***correlation structure is not good/strong enough*** (0.4-0.8): aggregate results highly sensitive to underlying methodological and conceptual assumptions, hampering meaningful interpretations
- ✓ At times, treating ***outliers*** is counterproductive: outlying values could be key to the ongoing analysis and should be kept in the data set!
- ✓ The data set might include ***not only quantitative but also qualitative information***

Example: meaningful outliers and weak correlations

The ESRB Dashboard and Heatmaps - Indicators of systemic risk in the EU financial system



			<i>average</i>	<i>st.d.</i>	<i>min</i>	<i>max</i>	<i>skew</i>	<i>kurt</i>
MACRO	Current real GDP growth	2.1	0.10	2.60	-7.92	5.99	-0.12	1.07
	Domestic credit-to-GDP gap	2.2	-6.77	6.06	-21.88	0.41	-1.11	0.30
	Current account balance-to-GDP ratio	2.3	0.02	4.09	-9.89	10.27	0.65	0.18
	Rate of unemployment	2.4	10.83	5.17	4.15	26.22	1.35	1.83
FISCAL	Forecast government debt-to-GDP ratio	2.5	67.83	35.26	6.25	170.32	0.65	0.30
	Forecast government deficit-to-GDP ratio	2.6	4.02	2.83	0.15	13.38	0.93	0.91
	Credit default swap premia on sovereign debt	2.7	574.16	1836.22	18.63	12447.07	5.57	31.71
	Annual sovereign debt redemptions as a share of GDP	2.8	14.51	11.07	0.00	47.37	0.81	-0.09
HH	Households' debt-to-gross disposable income ratio	2.9	104.67	61.58	36.88	268.92	1.23	0.86
	Estimates of the over/undervaluation of residential property prices	3.1.a.	2.58	11.85	-12.67	28.39	0.62	-0.93
	Share of foreign currency loans on total loans to non-MFIs	3.2a	18.81	25.58	0.28	89.45	1.55	0.97
	MFI lending to HH (annual growth rates) NEW	n.a.2	0.66	4.75	-16.69	11.12	-0.68	1.92
NFC	Non-financial corporations' debt-to-GDP ratio	2.13	115.88	74.87	0.00	555.04	2.74	14.13
	MFI lending to NFC (annual growth rates) NEW	n.a.1	0.50	5.02	-10.79	14.01	0.23	-0.41
MFIs	Share of central bank funding in credit institutions liabilities	4.5	4.60	7.28	0.00	34.78	2.58	7.24
	MFI's exposure to domestic sovereign (share of total assets) NEW	n.a.3	0.08	0.06	0.00	0.23	0.92	-0.11
	Banking sector leverage NEW	n.a.4	16.16	7.22	4.98	50.46	1.35	4.87
	Loan to deposit ratio NEW	n.a.5	1.31	0.47	0.61	2.97	1.93	4.43

Note: European Systemic Risk Board, raw data, pooled dataset: 2013Q3, 2012Q4, 2012 Q3, 2011 Q4 (four time-points x 28 countries)

Outliers in some indicators: problematic when analysing the correlation structure

Example: meaningful outliers and weak correlations

		average	st.d.	min	max	skew	kurt	
MACRO	Current real GDP growth	2.1	0.10	2.60	-7.92	5.99	-0.12	1.07
	Domestic credit-to-GDP gap	2.2	-6.77	6.06	-21.88	0.41	-1.11	0.30
	Current account balance-to-GDP ratio	2.3	0.02	4.09	-9.89	10.27	0.65	0.18
	Rate of unemployment	2.4	10.83	5.17	4.15	26.22	1.35	1.83
FISCAL	Forecast government debt-to-GDP ratio	2.5	67.83	35.26	6.25	170.32	0.65	0.30
	Forecast government deficit-to-GDP ratio	2.6	4.02	2.83	0.15	13.38	0.93	0.91
	Credit default swap premia on sovereign debt	2.7	574.16	1836.22	18.63	12447.07	5.57	31.71
	Annual sovereign debt redemptions as a share of GDP	2.8	14.51	11.07	0.00	47.37	0.81	-0.09
HH	Households' debt-to-gross disposable income ratio	2.9	104.67	61.58	36.88	268.92	1.23	0.86
	Estimates of the over/undervaluation of residential property prices	3.1.a.	2.58	11.85	-12.67	28.39	0.62	-0.93
	Share of foreign currency loans on total loans to non-MFIs	3.2a	18.81	25.58	0.28	89.45	1.55	0.97
NFC	MFI lending to HH (annual growth rates) NEW	n.a.2	0.66	4.75	-16.69	11.12	-0.68	1.92
	Non-financial corporations' debt-to-GDP ratio	2.13	115.88	74.87	0.00	555.04	2.74	14.13
	MFI lending to NFC (annual growth rates) NEW	n.a.1	0.50	5.02	-10.79	14.01	0.23	-0.41
MFIs	Share of central bank funding in credit institutions' liabilities	4.5	4.60	7.28	0.00	34.78	2.58	7.24
	MFI's exposure to domestic sovereign (share of total assets) NEW	n.a.3	0.08	0.06	0.00	0.23	0.92	-0.11
	Banking sector leverage NEW	n.a.4	16.16	7.22	4.98	50.46	1.35	4.87
	Loan to deposit ratio NEW	n.a.5	1.31	0.47	0.61	2.97	1.93	4.43

Outliers need to be treated before carrying out correlation analysis and using averages for aggregation.

However, the **aim of the ESRB is to monitor and analyse “extreme” behaviour**... and that precludes getting rid of outliers in the data set!

Example: meaningful outliers and weak correlations

	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.1.a.	3.2a	n.a.2	2.13	n.a.1	4.5	n.a.3	n.a.4	n.a.5
2.1	[1,1]	[-0.2,0.1]	[0.1,0.2]	[-0.4,-0.2]	[-0.7,-0.6]	[-0.6,-0.2]	[-0.7,-0.5]	[-0.6,-0.4]	[-0.4,-0.2]	[-0.3,0.3]	[0.4,0.6]	[0,0.2]	[-0.3,-0.1]	[0,0.4]	[-0.7,-0.5]	[-0.2,-0.1]	[-0.6,-0.4]	[-0.2,-0.1]
2.2	[-0.2,0.1]	[1,1]	[-0.3,0]	[-0.6,-0.1]	[-0.2,0.1]	[-0.5,-0.3]	[-0.1,0]	[0,0.3]	[-0.5,-0.5]	[0.1,0.5]	[-0.1,0]	[0.2,0.5]	[-0.5,-0.4]	[0.5,0.6]	[-0.5,-0.1]	[0.3,0.6]	[-0.2,-0.1]	[-0.4,-0.3]
2.3	[0.1,0.2]	[-0.3,0]	[1,1]	[-0.6,-0.2]	[-0.4,-0.2]	[-0.5,-0.3]	[-0.6,-0.4]	[-0.2,0]	[0.4,0.5]	[-0.4,-0.3]	[-0.3,-0.2]	[0.1,0.1]	[0.2,0.4]	[-0.1,-0.1]	[-0.4,-0.2]	[-0.5,-0.2]	[0.1,0.4]	[0.3,0.4]
2.4	[-0.4,-0.2]	[-0.6,-0.1]	[-0.6,-0.2]	[1,1]	[0.2,0.5]	[0.6,0.7]	[0.1,0.8]	[0,0.2]	[-0.1,0.1]	[-0.1,0.1]	[0,0.2]	[-0.4,-0.1]	[-0.1,0.1]	[-0.4,-0.3]	[0.3,0.7]	[0.1,0.3]	[-0.2,0.3]	[0,0.1]
2.5	[-0.7,0.6]	[-0.2,0.1]	[-0.4,-0.2]	[0.2,0.5]	[1,1]	[0.5,0.7]	[0.6,0.6]	[0.6,0.7]	[0.1,0.2]	[-0.5,0.2]	[-0.4,-0.3]	[-0.4,-0.3]	[0,0.1]	[-0.5,-0.2]	[0.8,0.8]	[0,0.1]	[0.4,0.6]	[-0.1,-0.1]
2.6	[-0.6,-0.2]	[-0.5,-0.3]	[-0.5,-0.3]	[0.6,0.7]	[0.5,0.7]	[1,1]	[0.4,0.6]	[0.2,0.4]	[0.1,0.2]	[-0.3,0.1]	[-0.3,0]	[-0.3,-0.2]	[-0.1,0.1]	[-0.5,-0.2]	[0.6,0.8]	[0.1,0.2]	[-0.1,0.4]	[-0.1,0.1]
2.7	[-0.7,-0.5]	[-0.1,0]	[-0.6,-0.4]	[0.1,0.8]	[0.6,0.6]	[0.4,0.6]	[1,1]	[0.2,0.6]	[-0.2,0.1]	[-0.4,0.2]	[-0.1,0.1]	[-0.5,-0.3]	[0,0.2]	[-0.6,-0.3]	[0.7,0.8]	[0,0.2]	[-0.2,0.5]	[-0.2,-0.1]
2.8	[-0.6,-0.4]	[0,0.3]	[-0.2,0]	[0,0.2]	[0.6,0.7]	[0.2,0.4]	[0.2,0.6]	[1,1]	[-0.1,0.3]	[-0.2,0.5]	[-0.4,-0.3]	[-0.3,0]	[0.1,0.2]	[-0.2,0.1]	[0.4,0.4]	[0,0.3]	[0.2,0.6]	[-0.2,-0.1]
2.9	[-0.4,-0.2]	[-0.5,-0.5]	[0.4,0.5]	[-0.1,0.1]	[0.1,0.2]	[0.1,0.2]	[-0.2,0.1]	[-0.1,0.3]	[1,1]	[-0.5,-0.1]	[-0.4,-0.3]	[-0.1,0.1]	[0.5,0.5]	[-0.2,0]	[0.1,0.2]	[-0.6,-0.5]	[0.4,0.6]	[0.5,0.6]
3.1.a.	[-0.3,0.3]	[0.1,0.5]	[-0.4,-0.3]	[-0.1,0.1]	[-0.5,0.2]	[-0.3,0.1]	[-0.4,0.2]	[-0.2,0.5]	[-0.5,-0.1]	[1,1]	[-0.4,0]	[0,0.7]	[0,0.3]	[0.2,0.4]	[-0.4,0.3]	[-0.1,0.1]	[0.2,0.4]	[-0.2,0.3]
3.2a	[0.4,0.6]	[-0.1,0]	[-0.3,-0.2]	[0,0.2]	[-0.4,-0.3]	[-0.3,0]	[-0.1,0.1]	[-0.4,-0.3]	[-0.4,0]	[1,1]	[-0.4,-0.4]	[-0.4,-0.3]	[0,0.3]	[-0.3,-0.3]	[0.1,0.1]	[-0.5,-0.4]	[-0.2,-0.1]	
n.a.2	[0,0.2]	[0.2,0.5]	[0.1,0.1]	[-0.4,-0.1]	[-0.4,-0.3]	[-0.3,-0.2]	[-0.5,-0.3]	[-0.3,0]	[-0.1,0.1]	[0,0.7]	[-0.4,-0.4]	[1,1]	[-0.1,0.1]	[0.2,0.6]	[-0.5,-0.2]	[0,0.1]	[-0.1,0]	
2.13	[-0.3,-0.1]	[-0.5,-0.4]	[0.2,0.4]	[-0.1,0.1]	[0,0.1]	[-0.1,0.1]	[0,0.2]	[0.1,0.2]	[0.5,0.5]	[0,0.3]	[-0.4,-0.3]	[-0.1,0.1]	[1,1]	[-0.4,-0.2]	[0.1,0.2]	[-0.6,-0.6]	[0.1,0.4]	[0.1,0.2]
n.a.1	[0,0.4]	[0.5,0.6]	[-0.1,-0.1]	[-0.4,-0.3]	[-0.5,-0.2]	[-0.5,-0.2]	[-0.6,-0.3]	[-0.2,0.1]	[-0.2,0]	[0.2,0.4]	[0,0.3]	[0.2,0.6]	[-0.4,-0.2]	[1,1]	[-0.6,-0.3]	[0,0.4]	[-0.3,0.1]	[-0.3,0]
4.5	[-0.7,-0.5]	[-0.5,-0.1]	[-0.4,-0.2]	[0.3,0.7]	[0.8,0.8]	[0.6,0.8]	[0.7,0.8]	[0.4,0.4]	[0.1,0.2]	[-0.4,0.3]	[-0.3,-0.3]	[-0.5,-0.2]	[0.1,0.2]	[-0.6,-0.3]	[1,1]	[0,0.1]	[0.2,0.5]	[0,0.1]
n.a.3	[-0.2,-0.1]	[0.3,0.6]	[-0.5,-0.2]	[0.1,0.3]	[0,0.1]	[0.1,0.2]	[0,0.2]	[0,0.3]	[-0.6,-0.5]	[-0.1,0.1]	[0.1,0.1]	[0,0.1]	[-0.6,-0.6]	[0,0.4]	[0,0.1]	[1,1]	[-0.4,-0.3]	[-0.3,-0.3]
n.a.4	[-0.6,-0.4]	[-0.2,-0.1]	[0.1,0.4]	[-0.2,0.3]	[0.4,0.6]	[-0.1,0.4]	[-0.2,0.5]	[0.2,0.6]	[0.4,0.6]	[0.2,0.4]	[-0.5,-0.4]	[-0.1,0]	[0.1,0.4]	[-0.3,0.1]	[0.2,0.5]	[-0.4,-0.3]	[1,1]	[0.2,0.4]
n.a.5	[-0.2,-0.1]	[-0.4,-0.3]	[0.3,0.4]	[0,0.1]	[-0.1,-0.1]	[-0.1,0.1]	[-0.2,-0.1]	[-0.2,-0.1]	[0.5,0.6]	[-0.2,0.3]	[-0.2,-0.1]	[-0.1,0]	[0.1,0.2]	[-0.3,0]	[0,0.1]	[-0.3,-0.3]	[0.2,0.4]	[1,1]

Notes: raw data (without outliers), pooled dataset: 2013Q3, 2012Q4, 2012 Q3, 2011 Q4, correlations less than 0.38 are not significant

Weak correlation structure: poor (or negative) correlations / correlation structure changing over time

- Most bivariate correlations are not significant at any of the 4 time-points
- No bivariate correlation is significant at all four time points
- Presence of significantly negative correlations

Example: Quantitative and qualitative indicators

Multi-criteria performance matrix

	Criterion 1	Criterion 2	Criterion 3	Criterion 4
	(/20)	(rating)	(qual.)	(Y/N)
Alternative 1	20	135	G	Yes
Alternative 2	9	156	B	Yes
Alternative 3	15	129	VG	No
Alternative 4	9	146	VB	No
Alternative 5	7	121	G	Yes
...

Challenge: how to rank or evaluate the units (alternatives) according to a heterogeneous set of indicators (criteria)?

Social Choice Theory and Multi-Criteria Analysis

1	Ramon Llull
2	Nicolas de Condorcet
3	Nicholas of Kues
4	Jean-Charles, Chevalier de Borda

The problem as studied by *Social Choice*:

- Election: voters selecting candidates from a pool
- Each voter ranking candidates according to his/her preferences
- Point of contention: what voting/aggregation of preferences system would select the candidate that « best » represents social preferences?

Similar problem in *Multi-Criteria Analysis*:

- Candidates \leftrightarrow Units/Alternatives
- Voters \leftrightarrow Indicators/Criteria

Key assumptions:

- Indicators not expected to be related and dependent; indicators may be independent and even opposite (i.e. poor or even negative correlations among indicators)
- Usually, there is no optimal alternative maximising all the criteria at the same time; therefore compromise solutions have to be found to select the best option

Aggregation methods

- Based on Ranks

3. Median rank
4. Majority
5. Borda's Count

Methods based on ranks

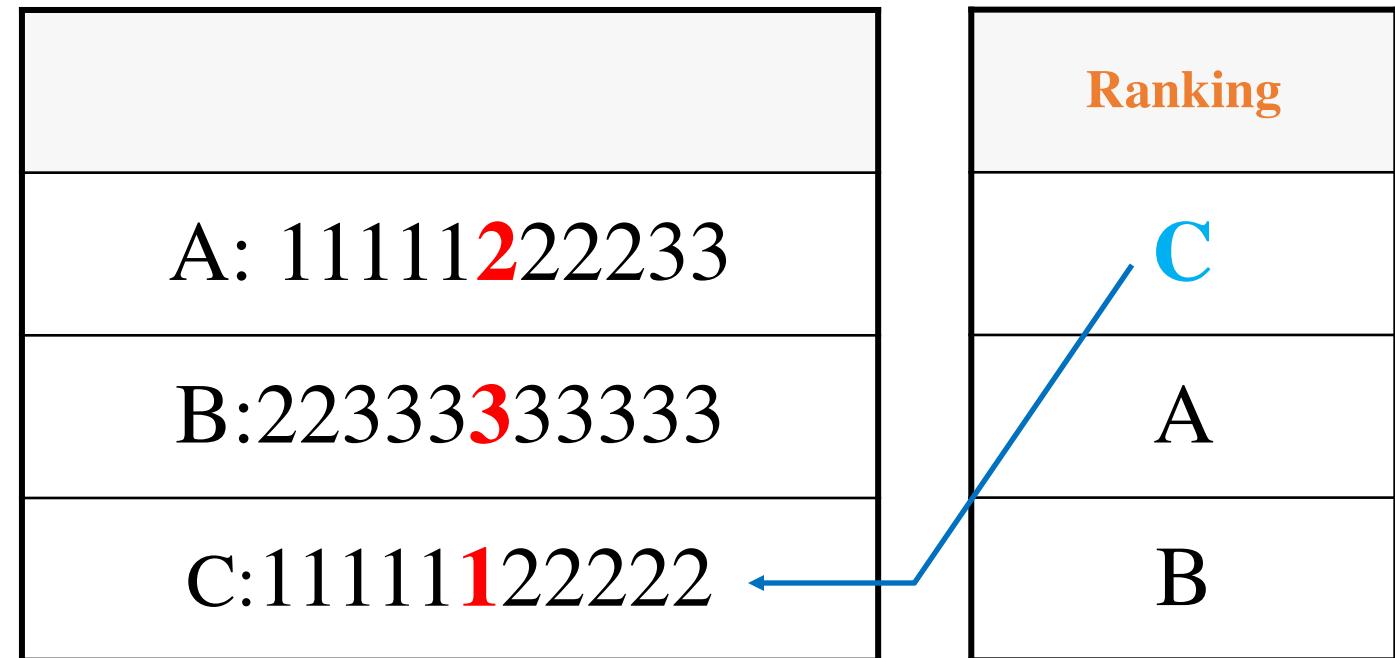
Each indicator represents a “criterion” or “point of view”
and ***determines a complete ranking of the units*** (alternatives)

	Criterion 1 (/20)	Criterion 2 (rating)	Criterion 3 (qual.)	Rank 1	Rank 2	Rank 3
Alternative 1	20	135	Good	1	3	2.5
Alternative 2	9	156	Bad	3.5	1	4
Alternative 3	15	129	Very Good	2	4	1
Alternative 4	9	146	Very Bad	3.5	2	5
Alternative 5	7	121	Good	5	5	2.5

Aggregation methods

- Based on Ranks

3. Median rank
4. Majority
5. Borda's Count


Median rank

3 units/alternatives: **A, B, C**

11 indicators/criteria:

5 indicators	4 indicators	2 indicators
A	C	C
C	A	B
B	B	A

Sort indicators by rank within each unit, calculate median rank for each unit, and rank units based on that median value

Aggregation methods

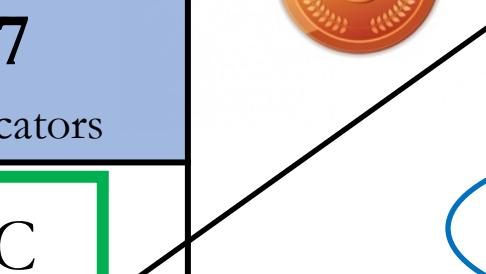
- Based on Ranks

3. Median rank
4. Majority (Relative Majority)
5. Borda's Count

Relative majority

Rank	Points
1	1
2	0
3	0
...	...
N-1	0
N	0

3 units/alternatives: **A, B, C**


30 indicators/criteria, **Only the first position counts**

13 indicators	10 indicators	7 indicators
A	B	C
B	C	B
C	A	A

In this example, **A** is the least preferred option in 17 indicators out of 30 (i.e. although **A** is ranked first, for a majority of indicators **B** and **C** are still preferred to **A**)

Problem: The alternative most often ranked first might also be the one with the strongest opposition (**Relative majority paradox**)

A	13
B	10
C	7

A is ranked first

Aggregation methods

- Based on Ranks

3. Median rank
4. Majority (Relative Majority)
5. Borda's Count

Borda's count

Rank	Borda points
1	N-1
2	N-2
3	N-3
...	...
N-1	1
N	0

3 units/alternatives: **A, B, C**

81 indicators/criteria:

30 indicators	29 indicators	10 indicators	10 indicators	1 indicators	1 indicators
A	C	C	B	A	B
C	A	B	A	B	C
B	B	A	C	C	A

C is ranked first:

$$C = (29 + 10) \times 2 + (30 + 1) \times 1 = 109$$

Points	Scores
2	A 101
1	B 33
0	C 109

Borda's count with unequal weights

Rank	Borda points
1	N-1
2	N-2
3	N-3
...	...
N-1	1
N	0

3 units/alternatives: **A, B, C**

6 indicators/ criteria with (unequal) weights

Ind. 1	Ind. 2	Ind. 3	Ind. 4	Ind. 5	Ind. 6
0.05 weight	0.30 weight	0.15 weight	0.10 weight	0.10 weight	0.20 weight
A	C	C	B	A	B
C	A	B	A	B	C
B	B	A	C	C	A

C is ranked first

$$C = (0.30 + 0.15) \times 2 + (0.05 + 0.20) \times 1 = 1.15$$

Points
2
1
0

(weighted) Scores	
A	0.70
B	0.85
C	1.15

Borda's count and the problem of irrelevant alternatives

Rank	Borda points
1	N-1
2	N-2
3	N-3
...	...
N-1	1
N	0

4 units/alternatives: **A, B, C, D**

7 indicators/criteria:

3 indicators	2 indicators	2 indicators	Points
C	B	A	3
B	A	D	2
A	D	C	1
D	C	B	0

Scores	
A	13
B	12
C	11
D	6

Ranking	
A	
B	
C	
D	

A is ranked first

Borda's count and the problem of irrelevant alternatives

Rank	Borda points
1	N-1
2	N-2
3	N-3
...	...
N-1	1
N	0

Let's exclude now the least popular alternative:

3 units/alternatives: **A, B, C, D**

7 indicators/criteria:

3 indicators	2 indicators	2 indicators	Points
C	B	A	2
B	A	C	1
A	C	B	0

C is first and the ranking has been reversed!

In this example, excluding the least popular (seemingly irrelevant) alternative would imply reversing the ranks of all other alternatives

Problem: Borda's count is ***highly dependent on irrelevant alternatives (rank reversals occur often – high risk of manipulating results)***

Scores	
A	6
B	7
C	8

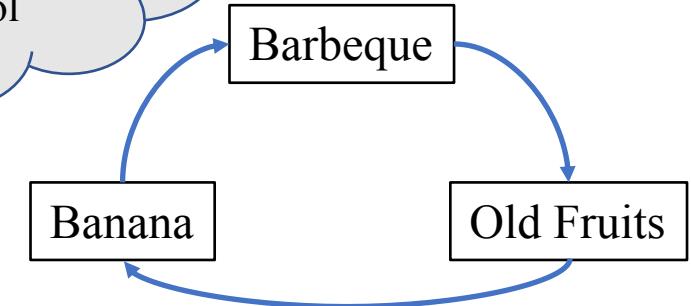
Ranking	
C	
B	
A	

Aggregation methods

- Based on Pairwise Comparisons

6. Condorcet
7. Kemeny
8. Arrow – Raynaud
9. Copeland

Back to the forest – what *if* the monkey can't calculate?


Safety: Danger! Humans
Taste: I love meat!
Distance: Needs little walk

Safety: Safe
Taste: Same old
Distance: Next to me

35 JRC-COIN © | Step 6: Aggregation rules

Safety: Can it be more safe?
Taste: Meh
Distance: Far

Aggregation methods

- Based on Pairwise Comparisons

6. Condorcet
7. Kemeny
8. Arrow – Raynaud
9. Copeland

Condorcet's Method

	Ind 1	Ind 2	Ind 3	Ind 4	Ind 5
Country A	58.2	51.1	59.6	79.7	28.2
Country B	88.3	50.6	68.8	69.6	45.8
Country C	77.9	34.4	50.2	47.5	48.9

Preference	Country A	Country B	Country C
Country A	-	2	3
Country B	3	-	4
Country C	2	1	-

The **Condorcet winner** is the alternative preferred over every other in pairwise comparisons

Considering 5 Indicators:

Country B is the preferred alternative

Ranking: B > A > C

Condorcet's Method: the problem with cycles

	Ind 1	Ind 2	Ind 3	Ind 4	Ind 5	Ind 6	Ind 7	Ind 8	Ind 9	Ind 10	Ind 11	Ind 12	Ind 13	Ind 14	Ind 15	Ind 16
Country A	58.2	51.1	59.6	79.7	28.2	65.5	56.0	77.1	15.4	76.4	51.9	96.5	97.1	51.9	60.9	50.5
Country B	88.3	50.6	68.8	69.6	45.8	63.6	75.8	71.3	28.2	68.2	82.6	87.7	97.0	49.8	58.7	81.2
Country C	77.9	34.4	50.2	47.5	48.9	46.3	77.4	65.7	15.0	58.0	56.6	97.1	98.7	47.6	67.0	51.1

Preference	Country A	Country B	Country C
Country A	-	9	7
Country B	7	-	11
Country C	9	5	-

Problem: Sometimes is not possible to find a Condorcet winner ("circular ambiguity")

A > B, B > C and C > A

No alternative preferred to all others – a further method must be used to choose the winner

Aggregation methods

- Based on Pairwise Comparisons

6. Condorcet
7. Kemeny (C-K-Y-L)
8. Arrow – Raynaud
9. Copeland

Importance of Indicators: The Outranking Matrix

	Ind 1	Ind 2	Ind 3	Ind 4	Ind 5
Country A	58	51	59	79	28
Country B	88	50	68	69	45
Country C	77	34	50	47	48
Weight	0.1	0.3	0.1	0.3	0.2

The outranking matrix collects the results of the pairwise comparisons

Preference	Country A	Country B	Country C
Country A	-	0.6	0.7
Country B	0.4	-	0.9
Country C	0.3	0.1	-

Considering the weights:
Country A is the preferred alternative
Ranking: A > B > C

Concordance Values

How to compute the concordance values

For every pairwise comparison we need to compute the *concordance value*

Note: weights can't be $\geq 50\%$; in case of ties, weights are split between the pair

Indicator	I.1	I.2	I.3
Weights	0.35	0.45	0.20
Unit A	3	Very Bad	205
Unit B	4	Bad	48
Unit C	3	Very Bad	88
Unit D	6	Very Good	446
Unit E	2	Good	208
Unit F	4	Bad	88
Unit G	3	Good	351
Unit H	5	Bad	88

Example 1:

A versus B = 0.20

B versus A = $0.35 + 0.45 = 0.80$

Example 2:

D versus G = $0.35 + 0.45 + 0.20 = 1.00$

G versus D = 0.00

Example 3:

F versus H = $0.225 + 0.10 = 0.325$

H versus F = $0.35 + 0.225 + 0.10 = 0.675$

Outranking Matrix – Construction

Data 2013	Fiscal Dimension			
	2.5	2.6	2.7	2.8
Orientation	-1	-1	-1	-1
Weights	0.25	0.25	0.25	0.25
MT	74.9	3.6	205.0	14.7
NL	75.8	3.5	47.9	11.6
PL	58.9	4.1	87.9	5.8
PT	124.3	4.0	445.5	18.8
RO	38.5	2.4	207.6	7.3
SE	39.0	0.4	17.7	7.0
SI	66.5	4.9	350.9	5.6
SK	56.7	3.1	87.8	9.2

Step 1 – Raw data, Weights & Orientation

Outranking Matrix – Construction

Data 2013	Fiscal Dimension			
	2.5	2.6	2.7	2.8
Orientation	-1	-1	-1	-1
Weights	0.25	0.25	0.25	0.25
MT	74.9	3.6	205.0	14.7
NL	75.8	3.5	47.9	11.6
PL	58.9	4.1	87.9	5.8
PT	124.3	4.0	445.5	18.8
RO	38.5	2.4	207.6	7.3
SE	39.0	0.4	17.7	7.0
SI	66.5	4.9	350.9	5.6
SK	56.7	3.1	87.8	9.2

Step 1 – Raw data & Weights & Orientation

Step 2 – Concordance value

For n countries, there are $n (n-1)$ pairwise comparisons to be made

Example:
 MT versus NL = 0.25
 NL versus MT = 0.75

Sum = 1.00

Outranking Matrix – Construction

Data 2013	Fiscal Dimension			
	2.5	2.6	2.7	2.8
Orientation	-1	-1	-1	-1
Weights	0.25	0.25	0.25	0.25
MT	74.9	3.6	205.0	14.7
NL	75.8	3.5	47.9	11.6
PL	58.9	4.1	87.9	5.8
PT	124.3	4.0	445.5	18.8
RO	38.5	2.4	207.6	7.3
SE	39.0	0.4	17.7	7.0
SI	66.5	4.9	350.9	5.6
SK	56.7	3.1	87.8	9.2

Step 1 – Raw data & Weights & Orientation

Step 2 – Concordance value

For n countries, there are **$n (n-1)$ pairwise comparisons** to be made

Example:

MT versus PT = 1.00

PT versus MT = 0.00

Sum = 1.00 \longrightarrow **Robust pair**

Outranking Matrix – Construction

	MT	NL	PL	PT	RO	SE	SI	SK
MT	0.00	0.25	0.25	1.00	0.25	0.00	0.50	0.00
NL	0.75	0.00	0.50	1.00	0.25	0.00	0.50	0.25
PL	0.75	0.50	0.00	0.75	0.50	0.25	0.75	0.50
PT	0.00	0.00	0.25	0.00	0.00	0.00	0.25	0.00
RO	0.75	0.75	0.50	1.00	0.00	0.25	0.75	0.75
SE	1.00	1.00	0.75	1.00	0.75	0.00	0.75	1.00
SI	0.50	0.50	0.25	0.75	0.25	0.25	0.00	0.25
SK	1.00	0.75	0.50	1.00	0.25	0.00	0.75	0.00

Step 1 – Raw data & Weights & Orientation

Step 2 – Concordance value

Step 3 – **Outranking matrix**

All concordance values are entered in the outranking matrix.
(entries above and below the diagonal sum up to 1.0)

MT versus NL = 0.25

NL versus MT = 0.75

MT versus PT = 1.00

PT versus MT = 0.00

Kemeny order *Condorcet-Kemeny-Young-Levenglick (C-K-Y-L)*

	MT	NL	PL	PT	RO	SE	SI	SK
MT	0.00	0.25	0.25	1.00	0.25	0.00	0.50	0.00
NL	0.75	0.00	0.50	1.00	0.25	0.00	0.50	0.25
PL	0.75	0.50	0.00	0.75	0.50	0.25	0.75	0.50
PT	0.00	0.00	0.25	0.00	0.00	0.00	0.25	0.00
RO	0.75	0.75	0.50	1.00	0.00	0.25	0.75	0.75
SE	1.00	1.00	0.75	1.00	0.75	0.00	0.75	1.00
SI	0.50	0.50	0.25	0.75	0.25	0.25	0.00	0.25
SK	1.00	0.75	0.50	1.00	0.25	0.00	0.75	0.00

Step 1 – Raw data & Weights & Orientation

Step 2 – Concordance value

Step 3 – Outranking matrix

Step 4 – Maximum Likelihood ranking
(highest support score)

Find the **permutation of rankings** which
maximises the sum of elements **above**
the diagonal

Kemeny order – Maximises Likelihood

	SE	RO	PL	SK	SI	NL	MT	PT
SE	0.00	0.75	0.75	1.00	0.75	1.00	1.00	1.00
RO	0.25	0.00	0.50	0.75	0.75	0.75	0.75	1.00
PL	0.25	0.50	0.00	0.50	0.75	0.50	0.75	0.75
SK	0.00	0.25	0.50	0.00	0.75	0.75	1.00	1.00
SI	0.25	0.25	0.25	0.25	0.00	0.50	0.50	0.75
NL	0.00	0.25	0.50	0.25	0.50	0.00	0.75	1.00
MT	0.00	0.25	0.25	0.00	0.50	0.25	0.00	1.00
PT	0.00	0.00	0.25	0.00	0.25	0.00	0.00	0.00

Step 1 – Raw data & Weights & Orientation

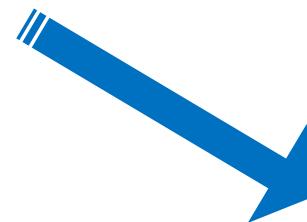
Step 2 – Concordance value

Step 3 – Outranking matrix

Step 4 – Maximum Likelihood ranking
(highest support score)

Find the **permutation of rankings** which
maximises the sum of elements **above**
the diagonal

Kemeny order – Maximises Likelihood


	SE	RO	PL	SK	SI	NL	MT	PT
SE	0.00	0.75	0.75	1.00	0.75	1.00	1.00	1.00
RO	0.25	0.00	0.50	0.75	0.75	0.75	0.75	1.00
PL	0.25	0.50	0.00	0.50	0.75	0.50	0.75	0.75
SK	0.00	0.25	0.50	0.00	0.75	0.75	1.00	1.00
SI	0.25	0.25	0.25	0.25	0.00	0.50	0.50	0.75
NL	0.00	0.25	0.50	0.25	0.50	0.00	0.75	1.00
MT	0.00	0.25	0.25	0.00	0.50	0.25	0.00	1.00
PT	0.00	0.00	0.25	0.00	0.25	0.00	0.00	0.00

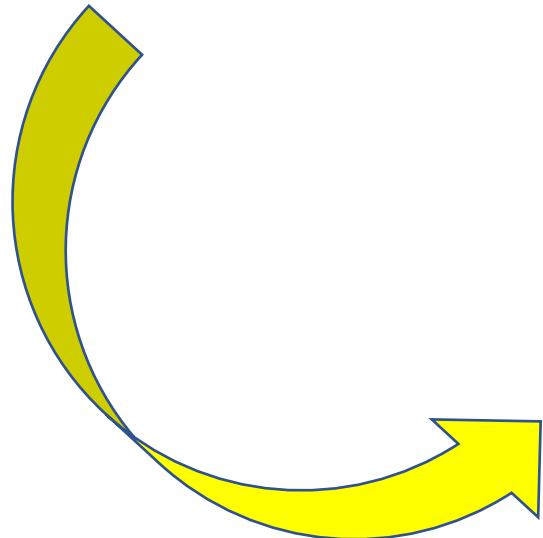
Step 1 – Raw data & Weights & Orientation

Step 2 – Concordance value

Step 3 – Outranking matrix

Step 4 – Maximum Likelihood ranking
(highest support score)

	Rank
SE	1
RO	2
PL	3
SK	4
SI	5
NL	6
MT	7
PT	8


A Kemeny order is not always unique!

(there might be several rankings with the same maximum support score)

Aggregation methods

- Based on Pairwise Comparisons

6. Condorcet
7. Kemeny (C-K-Y-L)
8. Arrow – Raynaud
9. Copeland

Quick-searching algorithms have been developed to approximate the optimal solution of Kemeny order

Arrow-Raynaud algorithm

- Arrow-Raynaud algorithm selects rankings that resolve cycles (based on a minimization function)
- The number of overall rankings identified as potential solutions to the cycle can be LARGE.

11 Equivalent rankings resulting from our example

MT	7	7	7	7	7	7	7	6	6	6	6	6
NL	6	6	6	5	5	5	4	5	5	4	5	
PL	3	4	2	4	3	2	5	4	3	5	2	
PT	8	8	8	8	8	8	8	8	8	8	8	8
RO	2	2	3	2	2	3	2	2	2	2	2	3
SE	1	1	1	1	1	1	1	1	1	1	1	1
SI	5	5	5	6	6	6	6	7	7	7	7	7
SK	4	3	4	3	4	4	3	3	4	3	4	4

Aggregation methods

- Based on Pairwise Comparisons

6. Condorcet
7. Kemeny (C-K-Y-L)
8. Arrow – Raynaud
9. Copeland

Solution to the dilemma...

Safety: Bad
Taste: Very Good
Distance: Average

Safety: Good
Taste: Average
Distance: Very Good

Safety: Very Good
Taste: Bad
Distance: Bad

How does Copeland work? Counts **Victories (+1)** and **Defeats (-1)** (*ties don't count*)

Outranking matrix

Preference	Barbeque	Banana	Old Fruits
Barbeque	-	1	2
Banana	2	-	2
Old Fruits	1	1	-

	Wins	Defeats	Score	Rank
Banana	2	0	2	1
Barbeque	1	1	0	2
Old Fruits	0	2	-2	3

A Realistic example

Victories (+1) minus Defeats (-1) (ties don't count)

Outranking matrix

	MT	NL	PL	PT	RO	SE	SI	SK
MT	0.00	0.25	0.25	1.00	0.25	0.00	0.50	0.00
NL	0.75	0.00	0.50	1.00	0.25	0.00	0.50	0.25
PL	0.75	0.50	0.00	0.75	0.50	0.25	0.75	0.50
PT	0.00	0.00	0.25	0.00	0.00	0.00	0.25	0.00
RO	0.75	0.75	0.50	1.00	0.00	0.25	0.75	0.75
SE	1.00	1.00	0.75	1.00	0.75	0.00	0.75	1.00
SI	0.50	0.50	0.25	0.75	0.25	0.25	0.00	0.25
SK	1.00	0.75	0.50	1.00	0.25	0.00	0.75	0.00

	Wins	Defeats	Total	Rank
SE	7	0	7	1
RO				
PL				
SK				
SI				
NL				
MT				
PT				

Copeland rule

If Kemeny is the optimal solution, Copeland is a good approximation with the advantage of “button-click” speed

Outranking matrix

	MT	NL	PL	PT	RO	SE	SI	SK
MT	0.00	0.25	0.25	1.00	0.25	0.00	0.50	0.00
NL	0.75	0.00	0.50	1.00	0.25	0.00	0.50	0.25
PL	0.75	0.50	0.00	0.75	0.50	0.25	0.75	0.50
PT	0.00	0.00	0.25	0.00	0.00	0.00	0.25	0.00
RO	0.75	0.75	0.50	1.00	0.00	0.25	0.75	0.75
SE	1.00	1.00	0.75	1.00	0.75	0.00	0.75	1.00
SI	0.50	0.50	0.25	0.75	0.25	0.25	0.00	0.25
SK	1.00	0.75	0.50	1.00	0.25	0.00	0.75	0.00

	Wins	Defeats	Total	Rank
SE	7	0	7	1
RO	5	1	4	2
SK	4	2	2	3
PL	3	1	2	4
NL	2	3	-1	5
SI	1	4	-3	6
MT	1	5	-4	7
PT	0	6	-6	8

It is in the COIN tool (ask us for R and Matlab code)

Summary of methods on Pairwise Comparison

- Fully ***non-compensatory*** approach;
- **only weights and orientation** are **required** to obtain the ranking of alternatives;
- **weights** represent exactly ***the importance of the indicator***;
- no impact of outliers;
- no need for data normalisation
- no need for "good" correlation structure;
- can be used both with continuous and categorical variables;
- computationally more demanding than standard averages;
- poor with small number of units;
- software available for Copeland (send an email to JRC-COIN): Excel, R, Matlab

Sources: Athanasoglou (2015) , Tarjan (1972), Van Zuylen, and Williamson (2009), Munda and Nardo (2009)

Super-small last example

	Math	Science	History
Albert	10	8	9
Howard	6	6	6
John	3	4	10
Amy	2	10	6

	Arithmetic	Geometric	Borda	Copeland
Albert	9.00	8.96	7	3
Howard	6.00	6.00	3.5	0
John	5.67	4.93	4	-1
Amy	6.00	4.93	3.5	-2

Correlation matrix				
	Math	Science	History	
Math	1	0.036	0.236	
Science	0.036	1	-0.564	
History	0.236	-0.564	1	

Revisiting aggregation approaches

- Based on Average Scores

1. Arithmetic Mean
2. Geometric Mean

- Based on Ranks

3. Median rank
4. Majority (Relative Majority)
5. Borda's Count

- Based on Pairwise Comparisons

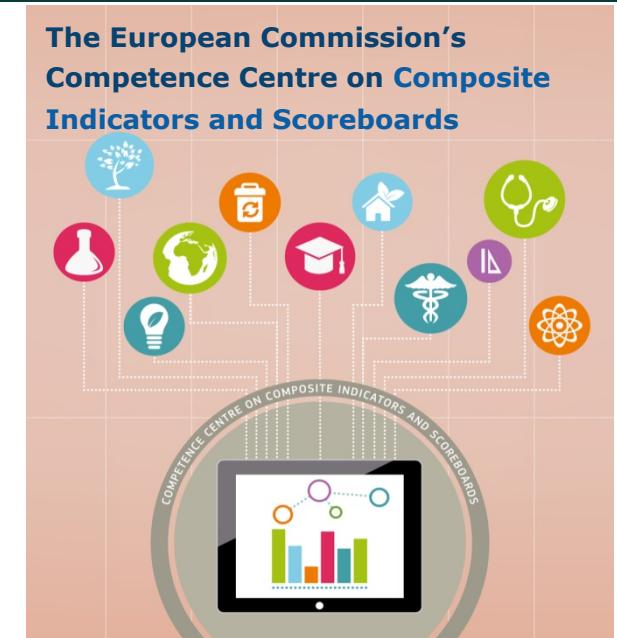
6. Condorcet
7. Kemeny (C-K-Y-L)
8. Arrow – Raynaud
9. Copeland

“Compensatory”
approaches
(weights interpreted
as trade-offs)

“Non-Compensatory”
approaches
(weights interpreted as
importance coefficients)

“Absolute” approaches:
each unit’s performance is
almost independent of other
units / output: scores

“Relative” approaches:
each unit’s performance
depends on other unit’s
performance:
ranks (*part of numerical
information is lost*)
- no normalisation needed
- not influenced by outliers



THANK YOU

Welcome to email us at: jrc-coin@ec.europa.eu

COIN in the EU Science Hub
<https://ec.europa.eu/jrc/en/coin>

COIN tools are available at:
<https://composite-indicators.jrc.ec.europa.eu/>

Suggested readings

- Arrow, K. J., and H. Raynaud, H. Social choice and multicriterion decision-making. MIT Press Books, 1.
- Athanasoglou S. (2015) Multidimensional welfare rankings under weight imprecision: a social choice perspective. *Social Choice and Welfare* 4(4), 719-744.
- Bartholdi III, J., Tovey, C. A., & Trick, M. A. (1989). Voting schemes for which it can be difficult to tell who won the election. *Social Choice and Welfare*, 6(2), 157-165.
- Kemeny, J. (1959). Mathematics without numbers. *Daedalus* 88: 577-591.
- Munda, G. 2008. Social Multi-Criteria Evaluation for a Sustainable Economy. Berlin Heidelberg: Springer-Verlag.
- Munda, G., Nardo, M. (2009). Non-compensatory/Non-linear composite indicatos for ranking countries: a defensible setting. *Applied Economics*, 41(12), 1513-1523.
- Tarjan, R. (1972). Depth-first search and linear graph algorithms. *SIAM Journal on Computing*, 1(2), 146-160.
- Truchon, M. (1998). An extension of the Condorcet criterion and Kemeny orders. *Cahier 98-15 du Centre de Recherche en Économie et Finance Appliquées*.
- Van Zuylen, A., and D. Williamson (2009). Deterministic Pivoting Algorithms for Constrained Ranking and Clustering Problems. *Mathematics of Operations Research*, 34, 594-620
- Young, H.P. (1988) Condorcet's Theory of Voting. *American Political Science Review* 82(2): 1231–1244.
- Young, H.P. (1995) Optimal Voting Rules. *Journal of Economic Perspectives*, 9, 51-64.
- Young, H.P. and A. Levenglick (1978) A Consistent Extension of Condorcet's election principle. *SIAM Journal on Applied Mathematics*, 35, 285-300.