

à.

The European Commission's science and knowledge service

Joint Research Centre

Estimation of crop residue production in Europe with empirical models

García-Condado, Raúl López-Lozano, Sara Marijn Van der Velde, Lorenzo Panarello, Antonio Zucchini, Iacopo Cerrani, Luigi Nisini, Bettina Baruth


FUBCE 2017 nean Biomass Conference &

Context

Objective, assessment approach, state of art, knowledge gaps

Objective: quantify and *spatialize* the *current biomass* production from agriculture in Europe without considering final uses

Global Objective Questions+Mandate+Comparison

Methodology – Part 1: Creating empirical models

Collection of experimental data from scientific literature

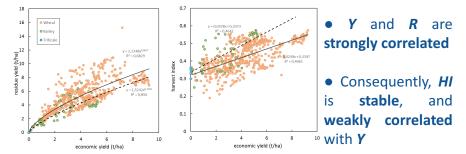
Extensive literature review of papers in English reporting **experimental data on economic yield and biomass partitioning** (*HI*, harvest index)

From a first selection of about 120 papers, extracting 1580 observations based on their definition of HI.

Yields were transformed to dry-matter content

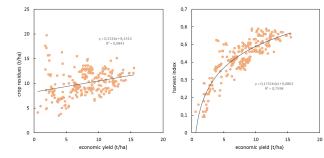
Number of observations used per geographical area

Geographical region\Crop	wheat	barley	maize	rice	sorghum	rapesee d	soybean	sunflow er	potato	sugar beet	Total Regions
EU-28	200	13	23		6	82	12	4	40	19	399
Europe (others)	10										10
North America	86	12	115		15	8	54		6		296
South America			46						18		64
Middle East	36	12	16			100		34		26	224
Southern Africa	9										9
Southern Asia	56		45	20	69			32			222
South-eastern Asia				59			29				88
Eastern Asia	40			52		34	18		8		152
Australia	66	4			38						116
Total Crops	503	41	245	131	128	224	113	78	72	45	1580



Methodology – Part 1: Creating empirical models

1) **FINDINGS ABOUT:** Nature of the relationship between Y and HI


Groups of crops with 2 different behaviours in the relationsip Y-HI

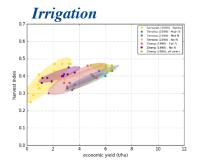
Wheat, barley, rice, sunflower, rapeseed

In these crops, kernel number is determined during vegetative growth (tillering, heading phases), which makes final yield correlated with vegetative biomass

Maize, sorghum, soybean, potato and sugar beet

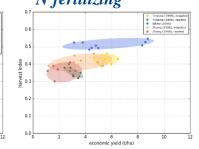
• Y and R are poorly correlated

• Consequently, *HI* is variable, and **strongly** correlated with *Y*


In maize and sorghum, both kernel number and grain weight are after the plant vegetative growth

Potato and sugarbeet vegetative biomass is detached from yield

2) <u>FINDINGS ABOUT:</u> How Y and biomass partitioning (*HI*) are affected by the influence of environmental/genetics/management


Irrigation (water availability) introduces significant changes in both HI and Y

Genetics introduce variability in HI but not too much in Y. N fertilizing changes Y, but not the HI

N fertilizing

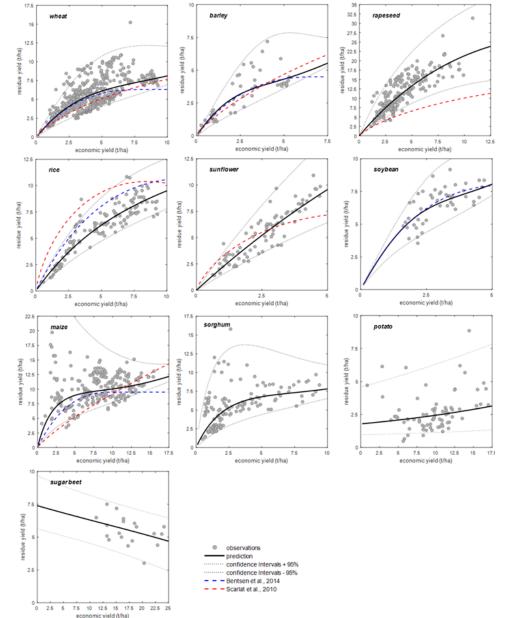
Therefore, **empirical models** between *Y* and *HI* are mainly **describing changes in water availability**

Methodology – Part 1: Creating empirical models

3) Producing new empirical models to predict R from Y with 95% confidence intervals

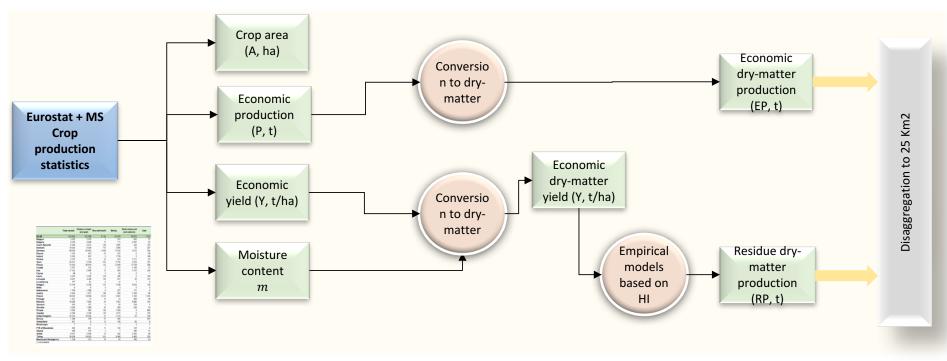
FINDINGS

Statistical analysis to construct robust regression models


- **<u>Finding</u>**: Need of using *HI* as predicted variable to remove heteroscedasticity (R-Y) when computing models.
- Apply transformations for normality of residuals

Model **uncertainties** are **quite large** (e.g maize). Mostly due to differences in the crop varieties and other management factors (N fertilizing)

Overall agreement with **other studies** in the **main crops** (wheat, barley, maize).


• Sometimes the differences against Bentsen et al. (2014) or Scarlat (2010) are due to the models imposed (e.g. logarithmic, exponential)

Crops modelled cover 98% of EU28 crop residue production.

Methodology – Part 2: Assessment in Europe

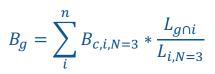
Implementation of the models within EU28 and estimation for the minority crops

Collection and harmonization of regional statistics (1998-2015)

Database from EUROSTAT and MS collected at regional data (NUTS3 level) Post-processing

Economic production

algorithm to generate a complete dataset

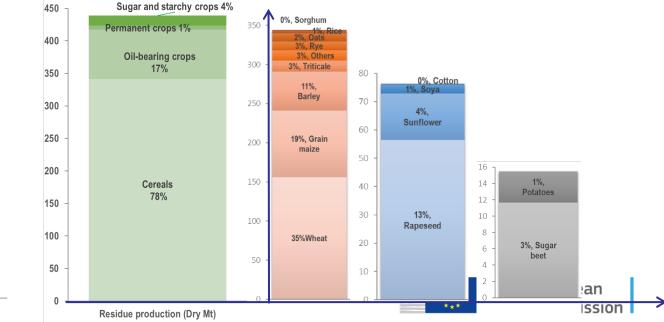

Estimation in dry matter at NUTS3 level

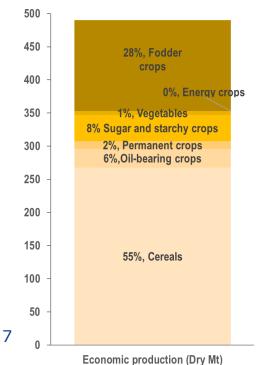
- Models: Cereals, oilseeds, sugar Crop residues and starchy crops. (98% EU28 RP)
 - Fixed coefficients: permanent
 - crops, (others: pulses, industrial)

Vegetables, fodder crops, energy crops

Disaggregation 25 km2

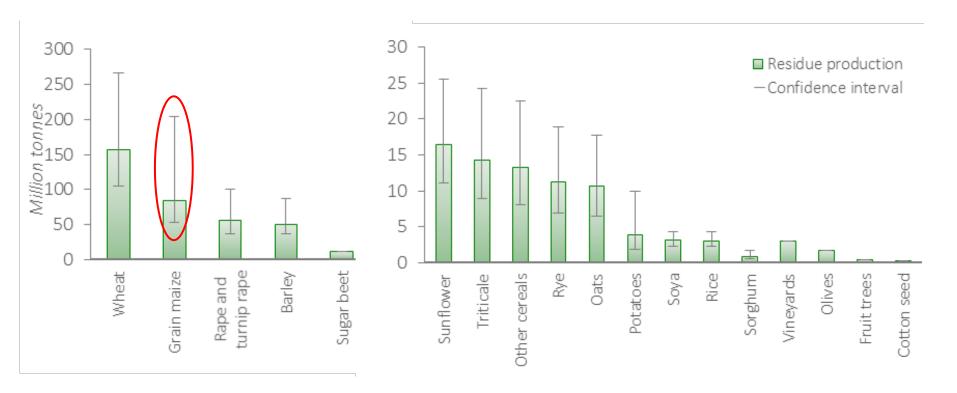
Land cover data (CLC)


Results – Big numbers (Dry matter Mt)


	Total	Economic	Residue	Upper	Lower
Crop group	Biomass	production	production	CI	CI
Cereals	609	268	341	643	227
Energy crops	0.19	0.19			
Fodder crops	137	137			
Oil-bearing crops	104	28	76	131	50
Permanent crops (+ others)	18	12	6		
Sugar and starchy crops	55	40	15	22	13
Vegetables	6	6			
Total	929	490	439	796	290
500					

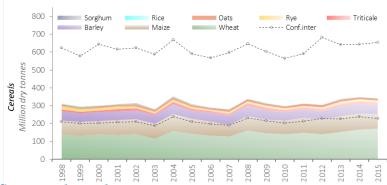
Residue production :

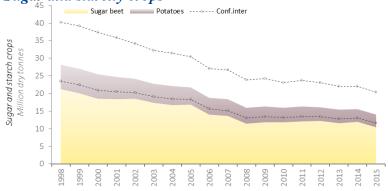
Average (2011-2015)



Results – Uncertainties of estimations by crops

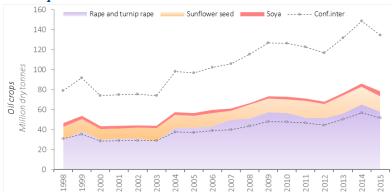
The uncertainties of the estimations in EU28 are high, especially for maize, the second in importance


Mostly due to differences in the **crop varieties** and other management factors (**N fertilizing**) in the **data collected** since they are coming from experimental conditions.

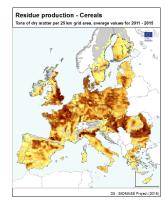


Results – Evolution and distribution in Europe

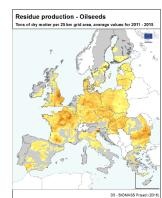
Evolution of crop production (1998-2015)



Sugar and starchy crops



Oil crops


Cereals

Current estimations (avg 2011-2015)

Stable production

Production of residues **evenly distributed** across EU28

Inter-annual variability is driven by weather

Decrease of residue production, driven by a progressive **reduction of areas** (e.g. impact of EU-policies in the case of sugar beet (EU sugar production quotas))

Production mainly concentrated: **FR, DE, UK**

Progressive augmentation, driven by an increase of **rapeseed area**. Consequence of the **increasing use as biofuel** (e.g. after biofuel EUpolicy).

Conclusions

A relationship between Y and HI exists in the crops studied BUT:

- It varies significantly depending on the crop, and is mainly describing effects of water availability.
- A regression between Y and HI seems a priori of little use: when HI is correlated to yield Y, R tends to be constant.
- *HI* is only useful as predicted variable to solve problems of heteroscedasticity.

Empirical models produce **high uncertainties**, and biophysical models (EO data) are needed to reduce these **large uncertainties observed**.

Residues production in EU28 is estimated at 439 dry Mt/year, with four crops (wheat, maize, barley, rapeseed) accounting for 80% of this.

Some crops (e.g. sugar beet, rapeseed) **present an appreciable production trend** due to gradual changes in sown area, partially reflecting the effect of EU policies.

Thank you

sara.garcia-condado@ec.europa.eu

EU Science Hub: ec.europa.eu/jrc/mars

Twitter: @EU_ScienceHub

Facebook: EU Science Hub - Joint Research Centre

LinkedIn: Joint Research Centre

