

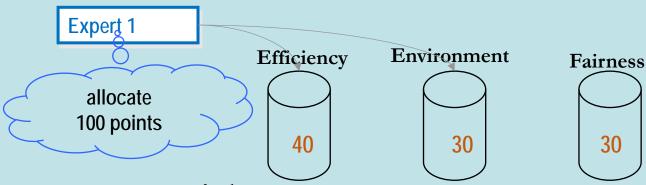
Step 5: Weighting methods Budget allocation, Analytic Hierarchy Process

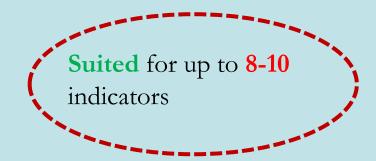
Béatrice d'Hombres

COIN 2019 - 17th JRC Annual Training on Composite Indicators & Scoreboards 04-06/11/2019, Ispra (IT)

Ten steps

Weights

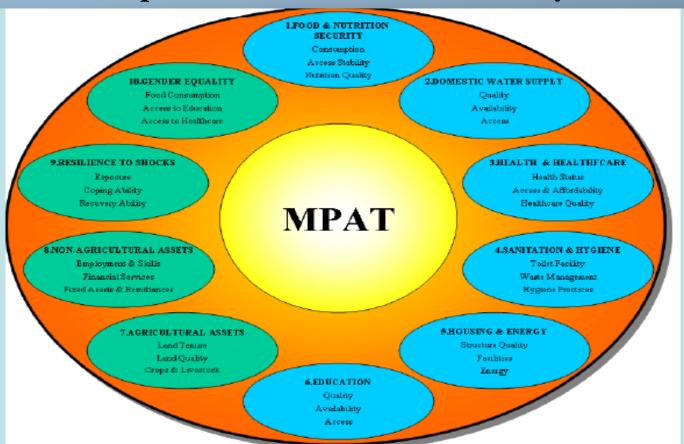

- ☐ Equal weights
- Weights based on statistical models
- ☐ Principal component/Factor analysis
- ☐ Data envelopment analysis
- ☐ Regression approaches
- Weights based on participation
- ☐ Budget allocation
- ☐ Analytic hierarchy process
- 🗖 Conjoint analysis



Budget Allocation - BAL

Phases

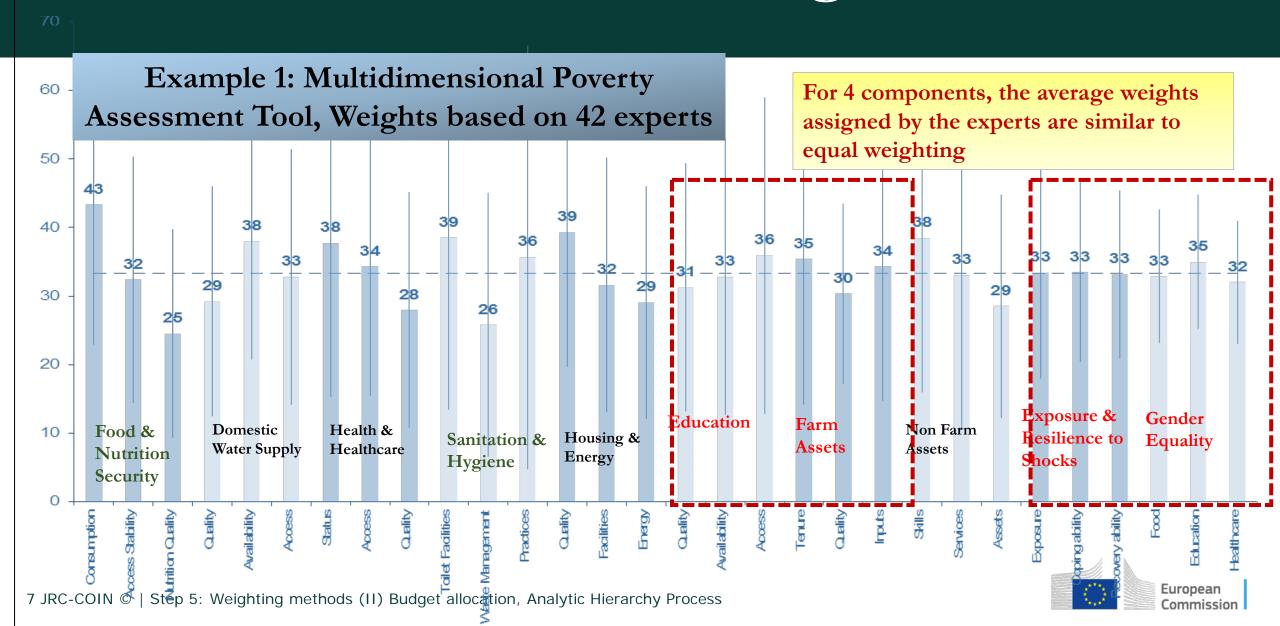
- 1. Selection of experts/stakeholders for the evaluation;
 - a. Number
 - b. Background/Expertise
- 2. **Allocation** of budget to indicators;


- 3. Calculation of weights;
- 4. Iteration of the budget allocation until convergence is reached (optional)

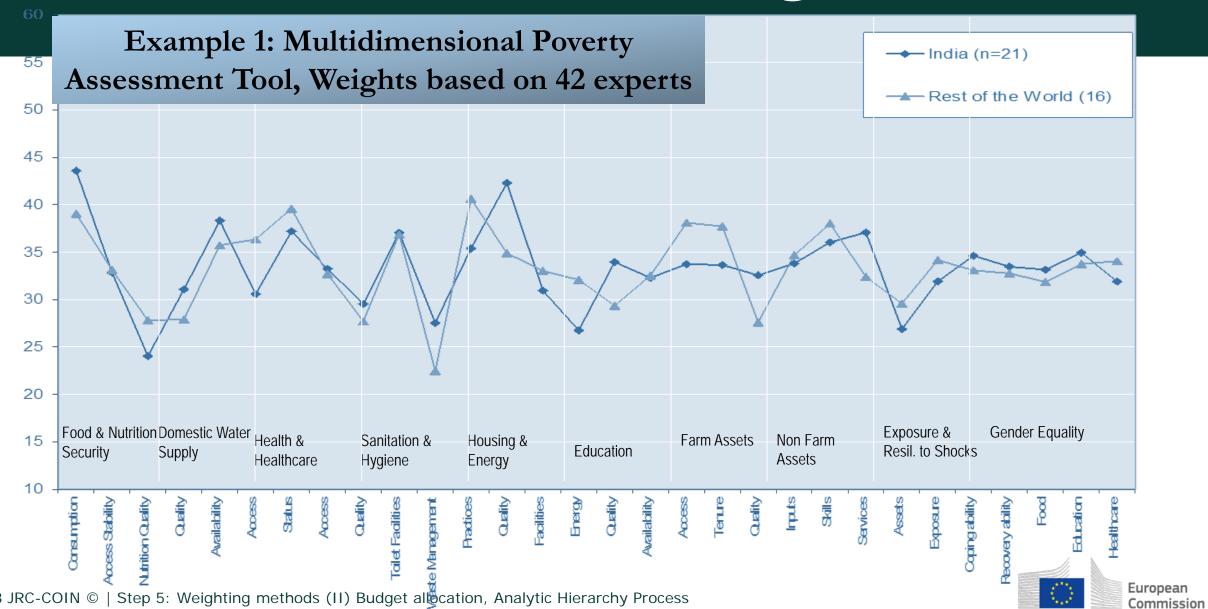
MPAT - snapshot

Source: Quantifying the qualitative: Eliciting expert input to develop the Multidimensional Poverty Assessment Tool (Cohen, Saisana, J of Dev. Studies, 2014, 50(1))

Example 1: Multidimensional Poverty Assessment Tool, Weights based on 42 experts



♦ BAL


- ♦ Purpose: Eliciting weights to be assigned to the subcomponents of each of the dimensions
- Selection of Experts
 - **42** Experts from 10 countries and 28 organizations
 - ♦ Mainly from UN agencies and universities
 - Selection based on expertise on poverty assessment tools in developing countries
 - No real sampling frame

MPAT - Results of the Budget Allocation

MPAT - Results of the Budget Allocation

MPAT - Results of the Budget Allocation

C3 Index - Snapshot

Example 2: The Cultural and Creative Cities Monitor, 2019 Edition


European

Commission

C3 Index - Snapshot

Example 2: The Cultural and Creative Cities Monitor, 2019 Edition

- **BAL**: Eliciting weights to be assigned to
 - **the 3 sub-indices**
 - the 9 dimensions
- Selection of Experts
 - ♦ 17 Experts
 - ♦ 5 from EC, 6 from Academia, 6 from international organisations
 - Experts divided in 3 groups
- **♦** When
 - Second participatory workshop of the C3
 Monitor November 2016

CONTINUESTICAL

C3 Index - BAL

Example 2: The Cultural and Creative Cities Monitor, 2019 Edition

	Group 3	Group 2	Group 1	Average of the 3 groups	Final Weight
Cultural	40	50	40	43.3	40
Vibrancy Creative	40	30	40	43.3	40
Economy	40	30	35	35.0	40
Enabling					
Environment	20	20	25	21.7	20

Weights assigned to the three subindices by each group

«Enabling Environment» sub-indice

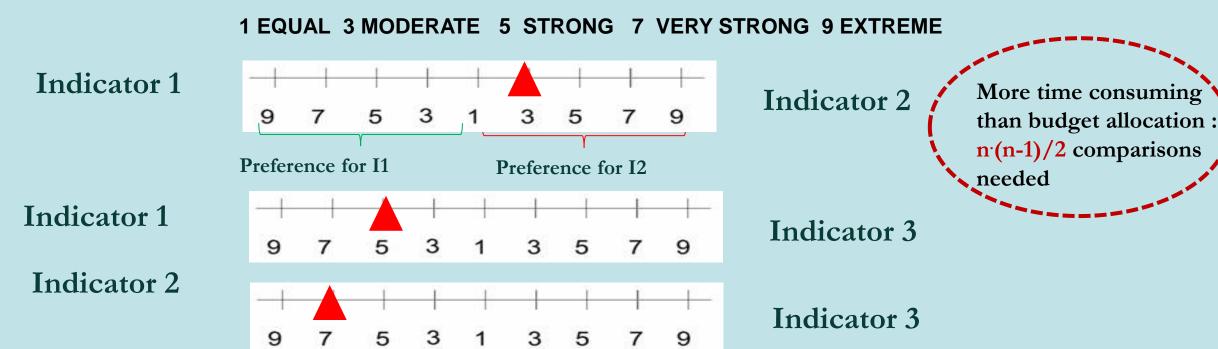
 Emerged from the discussion that accessibility and governance dimensions should have a minimum weight

Human Capital & Education - Academic Appeal	40
Openness, Tolerance and Trust	40
Accessibility - local & international	15
Governance & Regulations	5

Suggestions for the BAL

- ☐ When possible- use a **sampling frame** to select the experts & **maximize response rate**
- → Compensating experts might increase participation (Chowdury and Squire, 2006)
- ☐ Experts with balance of diverse backgrounds
- ☐ Collect information on the **characteristics** of the experts (Cooke, 1991)
- ☐ During the survey, **do not bother about the "100 points" sum** when there are more than 4 indicators (rescale to 100 after the survey).
- Randomize the order of the components, so that some experts evaluate first component A and others component B, and so on.

- Multi-criteria decision making method
- > Developed by Thomas Saaty (1980, 1987)


Phases

- 1. Selection of experts/stakeholders for the evaluation;
- 2. Pairwise comparisons of indicators on a scale 1 to 9 (1: equally important, 9: most important);
- 3. Calculation of weights through the derivation of the priority vector;
- 4. Estimation of consistency of the experts' assessment.

Phase 2- PAIRWISE COMPARISONS to express THE RELATIVE IMPORTANCE OF ONE INDICATOR OVER ANOTHER

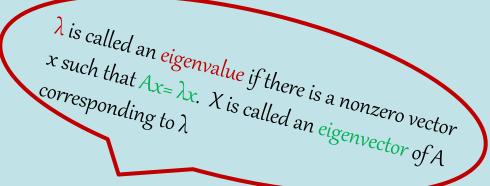
Which indicator do you feel is more important?

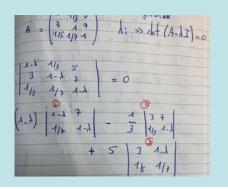
Phase 2- PAIRWISE COMPARISONS to express THE RELATIVE IMPORTANCE OF ONE INDICATOR OVER ANOTHER

1 EQUAL 3 MODERATE 5 STRONG 7 VERY STRONG 9 EXTREME

 \triangleright Set up a n * n matrix (A) with n being the number of indicators

Matrix A	Indicator 1	Indicator 2	Indicator 3		
Indicator1	1	1/3	5		
Indicator 2	3	1	7		
Indicator 3	1/5	1/7	1		
			e times more im	portant	I ₁₂ Reciprocal value of I ₂₁


Phase 3- Calculation of WEIGHTS


For each matrix A, need to derive the weights

→ different methods

Saaty (1990) shows that the weight vector is the eigenvector of the matrix A corresponding to the highest eigenvalue

```
mkmat indicator1 indicator2 indicator3, matrix(A)
matrix list A
matrix symeigen Eigenvector Eigenvalue=A
matrix list Eigenvector
matrix list Eigenvalue
```


Phase 3- Proxy of the **weights vector** when the number of Indicators is limited **–normalized columns method**

a - **Sum** each column of the matrix

b - Normalized relative weights

c - Average across the rows

	I1	I 2	13
I1	1	1/3	5
I2	3	1	7
I3	1/5	1/7	1
Sum	21/5	31/21	13

	I1	I 2	I3
I1	5/21	7/31	5/13
I2	15/21	21/31	7/13
13	1/21	3/31	1/13
Sum	1	1	1

I.1	0.2828
I2	0.6434
I3	0.0738

Weights

Phase 3- Proxy of the **weights vector** when the number of Indicators is limited **–normalized columns method**

a - **Sum** each column of the matrix

b - Normalized relative weights

c - Average across the rows

	I1	I 2	13
I1	1	1/3	5
I2	3	1	7
I3	1/5	1/7	1
Sum	21/5	31/21	13

	I1	I 2	I 3
I1	5/21	7/31	5/13
I2	15/21	21/31	7/13
13	1/21	3/31	1/13
Sum	1	1	1

I.1	0.2828
I2	0.6434
I3	0.0738

Weights

Phase 3- Other method to retrieve the weights vector

geometric mean method

	11	I 2	13	geometric mean	normalized geometric mean
I1	1.00	0.33	5.00	1.19	0.28
I2	3.00	1.00	7.00	2.76	0.65
I3	0.20	0.14	1.00	0.31	0.07
Sum				4.25	

Phase 4 - Estimation of consistency ratio

Experts' assessment: are they consistent?

Consistency: $I_{13} = I_{12} * I_{23}$

 \square Experts' assessment = **subjective** preferences

☐ Some inconsistencies are acceptable

	I1	I 2	I3
I1	1	1/3	5
I2	3	1	7
13	1/5	1/7	1

☐ For each expert: necessary to compute a **consistency ratio**

$$\mathbf{CR} = \frac{\text{consistency index of matrix A}}{\text{consistency index of a random-like matrix}} = \frac{\mathbf{CI}(A)}{\mathbf{CI}(R)}$$

$$CI(A) = \frac{\lambda_{max-n}}{n-1}, \lambda_{max} = n$$
if A consistent

Suggested rule-of-thumb is $\mathbb{CR} \leq 0.1$ although 0.2 is often cited – do not drastically affect the weights (Saaty, 1980).

TAI - Snapshot

Source: Saisana, Saltelli, 2008, Expert Panel Opinion and Global Sensitivity Analysis for Composite Indicators, Lecture Notes in Computational Science and Engineering 62, pp. 251-275.

Example 1: Technological Achievement Index

						L						0		
				Questionna	aire	1								
	Which Indicator D	o Y	ou F	eel Is More Important?			To	Wh	at De	egre	e?			
				•						_				
					- 1	2	3	4	5	6	7	. 8	3 9	9
	Patents	V5.	х	Royalties			х							٦
х	Patents	V5.		Internet					х					
х	Patents	VS.		Technology exports				х						٦
х	Patents	VS.		Telephones			х							٦
х	Patents	V5.		Electricity									x	1
	Patents	V5.	x	Schooling years						х				٦
	Patents	V5.	х	University Students								х		٦
х	Royalties	V5.		Internet			x							٦
	Royalties	VS.	х	Technology exports				х						
х	Royalties	VS.		Telephones					х					
х	Royalties	V5.		Electricity									х	
	Royalties	VS.	х	Schooling years			х							
	Royalties	V5.	х	University Students				×						
	Internet	V5.	x	Technology exports						х				
х	Internet	V5.		Telephones		х								
х	Internet	V5.		Electricity		х								
	Internet	V5.	х	Schooling years							х			
	Internet	V5.	x	University Students						х				
х	Technology exports	V5.		Telephones					х					
х	Technology exports	V5.		Electricity									х	
	Technology exports	V5.	x	Schooling years				х						
	Technology exports	V5.	х	University Students					х					
×	Telephones	V5.		Electricity							х			
	Telephones	V5.	х	Schooling years									х	
	Telephones	VS.	х	University Students									х	
	Electricity	VS.	х	Schooling years									х	
	Electricity	VS.	x	University Students									х	
х	Schooling years	VS.		University Students		х								

- ☐ Measure how a country is **creating and diffusing new & existent technologies**and building a human skill base with 8 **achievement indicators**
- ☐ Original CI: equal weight
- Departure from the original weithing scheme using an AHP based on a survey of 20 scientists of the JRC

TAI – Reciprocal matrix A of 1 expert

Example 1: Technological Achievement Index

I EQUAL 3 MODERATE 5 STRONG 7 VERY STRONG 9 EXTREME

USING PAIRWISE COMPARISONS to express THE RELATIVE IMPORTANCE
OF ONE CRITERION OVER ANOTHER

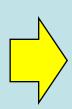
	Patents	Royalties	Internet	Tech.Exports	Telephones	Electricity	Schooling	University St.
Patents	1	1/3	5	4	3	9	1/6	1/8
Royalties	3	1	3	1/4	5	9	1/3	1/4
Internet	1/5	1/3	1	1/6	2	2	1/7	1/6
Tech.Exports	1/4	4	6	1	5	9	1/4	1/5
Telephones	1/3	1/5	1/2	1/5	1	7	1/9	1/9
Electricity	1/9	1/9	1/2	1/9	1/7	1	1/9	1/9
Schooling	6	3	7	4	9	9	1	2
University St.	8	4	6	5	9	9	1/2	1

TAI –Reciprocal matrix A- any inconsistency?

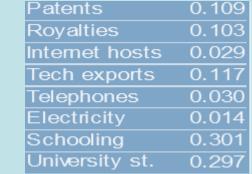
Example 1: Technological Achievement Index

	Patents	Royalties	Internet	Tech.Exports	Telephones	Electricity	Schooling	University St.
Patents	1	1/3	5	4	3	q	1/6	1/8
Royalties	3	1	3	1/4	Try to sp	oot the	1/3	1/4
Internet	1/5	1/3	1	1/6	inconsis	tency	1/7	1/6
Tech.Exports	1/4	4	6	1	J	<u> </u>	1/4	1/5
Telephones	1/3	1/5	1/2	1/5	1	7	1/9	1/9
Electricity	1/9	1/9	1/2	1/9	1/7	1	1/9	1/9
Schooling	6	3	7	4	9	9	1	2
University St.	8	4	6	5	9	9	1/2	1

For a matrix of size $Q \times Q$, only Q-1 comparisons are required to establish weights for Q indicators. But the number of AHP comparisons is Q(Q-1)/2.



TAI – Results of the AHP

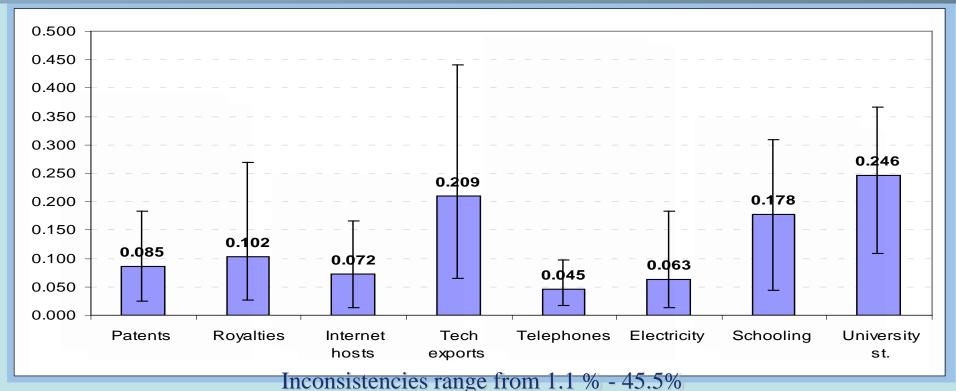

Example 1: Technological Achievement Index

				Questionna	aire	•							
	Which Indicator D	o Y	ou F	eel Is More Important?			To) Wh	at D	egre	₽?		
					1	2	3	4	5	- 6	7	8	9
	Patents	V5.	х	Royalties			x						
х	Patents	VS.		Internet					×				
х	Patents	VS.		Technology exports				х					
х	Patents	VS.		Telephones			х						
х	Patents	V5.		Electricity									x
	Patents	V5.	x	Schooling years						х			
	Patents	VS.	x	University Students								х	
х	Royalties	VS.		Internet			x						
	Royalties	VS.	х	Technology exports				х					
х	Royalties	VS.		Telephones					ж				
х	Royalties	V5.		Electricity									x
	Royalties	VS.	х	Schooling years			х						
	Royalties	VS.	x	University Students				х					
	Internet	VS.	×	Technology exports						х			
х	Internet	V5.		Telephones		×							
х	Internet	VS.		Electricity		х							
	Internet	V5.	х	Schooling years							х		
	Internet	VS.	x	University Students						х			
х	Technology exports	VS.		Telephones					х				
х	Technology exports	VS.		Electricity									x
	Technology exports	VS.	х	Schooling years				х					
	Technology exports	V5.	х	University Students					х				
x	Telephones	VS.		Electricity							х		
	Telephones	VS.	х	Schooling years									х
	Telephones	VS.	x	University Students									x
	Electricity	VS.	×	Schooling years									×
	Electricity	VS.	х	University Students									x
х	Schooling years	V5.		University Students		х							

	Patents	Royalties	Internet	Tech.Exports	Telephones	Electricity	Schooling	University St.
Patents	1	1/3	5	4	3	9	1/6	1/8
Royalties	3	1	3	1/4	5	9	1/3	1/4
Internet	1/5	1/3	1	1/6	2	2	1/7	1/6
Tech.Exports	1/4	4	6	1	5	9	1/4	1/5
Telephones	1/3	1/5	1/2	1/5	1	7	1/9	1/9
Electricity	1/9	1/9	1/2	1/9	1/7	1	1/9	1/9
Schooling	6	3	7	4	9	9	1	2
University St.	8	4	6	5	9	9	1/2	1

Weights

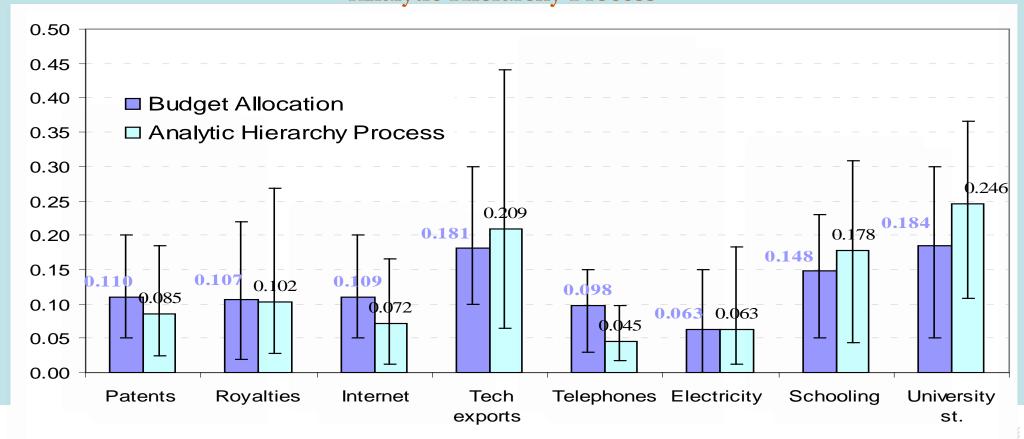
Inconsistency 17.4 %


solve for the

Eigenvector

TAI – Result of the AHP - 18 weights vectors

Example 1: Technological Achievement Index


(desired < 10-20 %)

TAI – Compare BHL and AHP

Weights obtained by Budget allocation are closer to equal weights than those obtained by

Analytic Hierarchy Process

AHP – other example

Example 2 : Gender Equality Index

AHP

Purpose: Assign weights at the domain level

Experts: EIGE's Working Group on the Gender Equality Index and EIGE's Expert Forum. Experts'

Response rate 50%
Based on consistency
ratio, 60% of experts
weights kept

Conjoint analysis - CA

- BAL and AHP possible when limited numbers of dimensions/indicators
- Alternatively, expert-based weights can be derived from **conjoint analysis** (CA)
 - Respondents rank "alternative scenarios" (Hair et al., 1995)
 - Each scenario \rightarrow different values of the indicators/dimensions
 - Approach frequently used in **marketing** and **consumer** research
 - Decompositional multivariate data analysis.

References

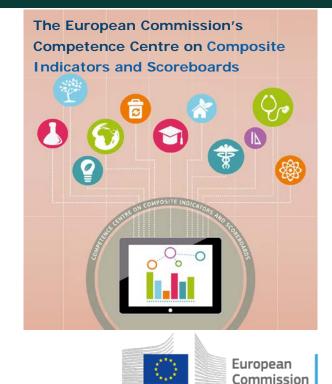
- Chowdhury S., & Squire L., 2006, Setting weights for aggregate indices: An application to the commitment to development index and human development index. *Journal of Development Studies*, 42, 761–771.
- Cohen, A., Saisana, M., 2014, Quantifying the Qualitative: Eliciting Expert Input to Develop the Multidimensional Poverty Assessment Tool, Journal of Development Studies 50(1): 35-50.
- Cooke, R. (1991). Experts in uncertainty: Opinion and subjective probability in science. New York: Oxford University Press.
- Green P.E., and Srinivasan V., 1978, Conjoint analysis in consumer research: issues and outlook, *Journal of Consumer Research* 5: 103-123.
- Hair J.F., Anderson R.E., Tatham R.L., and Black W.C.,1995, Multivariate data analysis with readings, fourth ed. Prentice Hall, Englewood Cliffs, NJ.
- Hair J.F., Black W.C., B.J., Babin, Anderson R.E. and R.L., Tatham, 2006, Multivariate data analysis, sixth edition, Pearson Prentice Hall,
 Upper Saddle River, NJ.
- Kucukusta, D., Denizci Guillet, B., 2014 Measuring spa-goers' preferences: A conjoint analysis approach. Int. J. Hosp. Manag. 41, 115–124
- McDaniel C. and Gates R. ,1998, Contemporary Marketing Research. West Publishing, Cincinnati, OH.
- Montalto V., Jorge Tacao Moura C., Langedijk S. and Saisana M. 2017. The Cultural and Creative Cities Monitor, Scientific and Technical Research Report, JRC105971

References

- Saaty T. L. ,1980, The Analytic Hierarchy Process, New York: McGraw-Hill.
- Saaty R.W.,1987, The analytic hierarchy process: what it is and how it is used, Mathematical Modelling, 9: 161-176.
- Saaty, T.L., 1990, The Analytic Hierarchy Process in Conflict Management, International Journal of Conflict Management, 1(1):47 – 68
- Saaty, T.L, 2003, Decision-making with the AHP: Why is the principal eigenvector necessary, European Journal of Operational Research 1145:85-91
- Saisana M., Saltelli A., 2008, Expert Panel Opinion and Global Sensitivity Analysis for Composite Indicators, Lecture Notes in Computational Science and Engineering 62: 251-275.
- Sevigny, E. L., Saisana M., 2013, Developing the U.S. Drug Consequences Indices, 2000-2009. Washington, DC: Office of National Drug Control Policy, Executive Office of the President.
- Sydorovych, O., Wossink, A., 2008, The meaning of agricultural sustainability: Evidence from a conjoint choice survey. Agric. Syst. 98,

THANK YOU

Any questions?


Welcome to email us at: jrc-coin@ec.europa.eu

COIN in the EU Science Hub

https://ec.europa.eu/jrc/en/coin

COIN tools are available at:

https://composite-indicators.jrc.ec.europa.eu/

