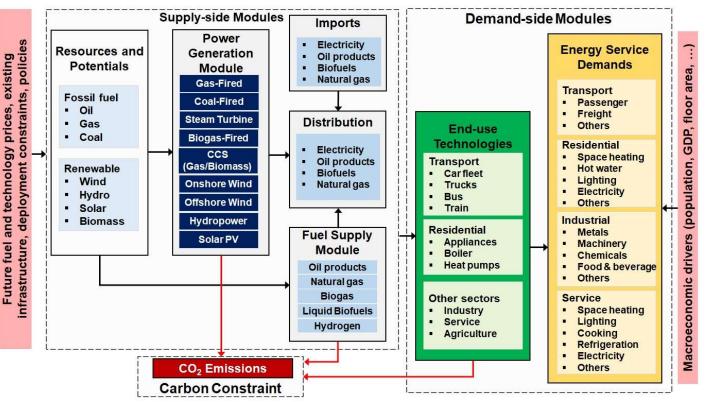


Informing Ireland's carbon budgets with the TIMES-Ireland energy systems model

2021 EU Conference on Modelling for policy support

Dr. Hannah Daly, Dr. Olexandr Balyk, Mr. Andrew Smith University College Cork November 26th, 2021

Ireland has one of the most ambitious 2030 decarbonisation targets in the world Agriculture share of total GHGs, 2018


Mitigation targets for 2030, % relative to 2018/1990 -70% Denmark -63% Ireland's target relative to 1990 is not world-leading Ireland -51% because of historical lack of action -65% Germany -49% -47% United States -68% United Kingdom -46% -55% EU -41% -40% Japan Reduction relative to -39% New Zealand targets 10% 1990 reduction on 2017 methane 11% New Zealand by 2030 and ~40% reduction -28% 2018 in emissions of other gases -80% -60% -40% -20% 0% **Excluding LULUCF emissions**

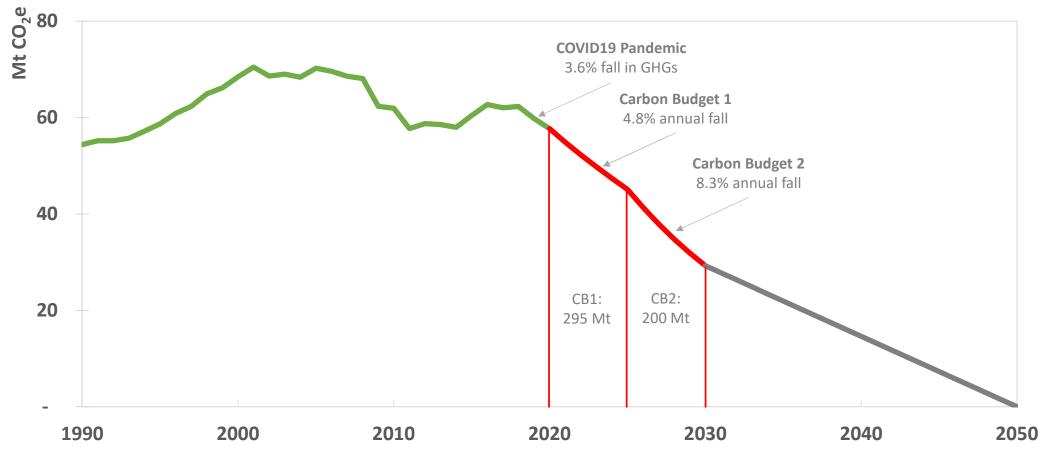
Ireland's high share of emissions from agriculture make achieving this target even more challenging

26.11.2021

TIMES-Ireland Model (TIM)

TIM is an Energy Systems Optimisation Model (ESOM) which calculates the "leastcost" configuration of the energy system which meets future energy demands, respecting technical, environmental, social & policy constraints defined by the user.

Given


- Final energy demands
 - e.g., passenger kms, home heating
- CO₂ constraints on energy
 - e.g., carbon budget, annual target
- Technology, fuel costs & efficiency
 - Existing & future cost and performance
- Resource availability
 - e.g., on/offshore wind, bioenergy
- User-defined constraints
 - e.g., speed of technology uptake, policies

TIM calculates

- "Least-cost" energy system meeting all constraints
- Investment and operation of energy technologies
- Emissions trajectories
- Total system cost
- Imports/exports
- Marginal energy prices

Download full documentation paper: https://tim-carbon-budgets-2021.netlify.app/documentation/tim-documentation-paper.pdf

Analysis with TIM supported the Climate Change Advisory Council's consideration of the implications of carbon budgets

26.11.2021

Marginal Abatement Cost (2025-30 average) in core mitigation scenarios and scenario variants

		A-51%,E-51%	A-40%,E-57%	A-33%,E-61%	A-25%,E-65%
Core	"BAU" demands, no bioenergy imports, 4-times 2018 indigenous bioenergy, no power-CCS available, no H2 import, 18 GW VAR-RE	€674	€1,100	€1,292	€1,485
Low Energy Demand (LED)	Decoupling energy service demands: mobility shifting; dematerialisation; lower heating	€128	€403	€545	€757
Tech-optimism	Up to 25GW VAR-RE by 2030, H2 import Bioenergy import x3 times 2018 by 2030, 400 MW CCS available from 2027, +20%yoy	€436	€639	€812	€1,284
LED + Tech-optimism		€76	€125	€202	€317

()

Energy · Climate · Mari

The Marginal Abatement Cost represents the cost of mitigating the most expensive tonne of CO₂ in each scenario for the energy sector

26.11.2021

Web app for rapid results diagnostics, stakeholder engagement & dissemination https://tim-carbon-budgets-2021.netlify.app/results

EPMG About Scena	rios Documentation Results Archive		
enarios		Residential Services Industry Agriculture	
A25-E65 A25-E65 Early Action	Overview Final energy consumption Vehicle	sales and stock by mode Vehicle activity	
A25-E65 Late Action A25-E65 LED	New Private Cars - Stock by Type	Private Cars - Stock by Type	New HGV - Stock by Type
A25-E65 Tech-Optimism A33-E61 A33-E61 Early Action A33-E61 Late Action	S NEV OHEV OKE	S D BEV OHEY OKC	B NOV OFCY OHEV
33-E61 LED 33-E61 Tech-Optimism 40-E57	1500 -	A51-E51 Late Action	22.5 -
40-E57 Early Action 40-E57 Late Action	1000 -	2500 - BEV: 1050.58 KVehides Total: 2843.11 KVehides	15
40-E57 LED 40-E57 Tech-Optimism 451-E51 451-E51 Early Action			
51-E51 Late Action 51-E51 LED			
1-E51 Tech-Optimism 5-E49	New LGV - Stock by Type	HGV - Stock by Type	MGV - Stock by Type
55-E49 Early Action 55-E49 Late Action 55-E49 LED		BEY BRY HEY	B NOV FLCV FLCV
55-E49 Tech-Optimism VAM	150 -	60 -	30 -
lect 2nd scenario i1-E51 Late Action		40	20
Show difference		20	10 -
	2020 2025 2030 2035 2040 2045 2050	2020 2025 2030 2035 2040 2045 2050	2020 2025 2030 2035 2040 2045 2050

Key messages

The short time-horizon to 2030 and unprecedented decarbonisation speed requires a faster energy system transition than the natural renewal of many technologies, with wide-ranging implications

Unless breakthroughs in new energy technologies develop and evolve rapidly, abatement with new fuels and technologies <u>alone</u> will not be enough: Resilient pathways require a structural change in energy demands – Low Energy Demand scenario

Scaling up renewable electricity rapidly in all cases is essential, and managing electricity demand

Strengths of TIM & development process

- Model and results archives are <u>freely available</u>: <u>https://github.com/MaREI-EPMG/times-ireland-model</u>
- "Best-practice" <u>development approach</u> Git used for version control and integration, open web app for results analysis & diagnostics
- Developers with <u>international expertise</u> and links with global TIMES community, allowing knowledgesharing
- Using <u>TIMES framework</u> well-proven, high quality, continuously developed/maintained, open source code

- Strength of <u>systems approach</u> automatic "sector coupling" by design where is the best use of resources? What are sectoral trade-offs?
- Extensive <u>stakeholder review (https://tim-review1.netlify.app/</u>)
- Training PhDs, interns etc. & wider engagement integral for national <u>capacity-building</u>
- A focus on <u>alternate scenarios</u>, sensitivities, "what if" analyses
- Dynamic integration with national data sources and other national models (where possible)
- Flexible integration Simultaneously maintaining "stable, policy-ready" model and development of research variants, allowing innovations in ESOMs, pushing state-of-the-art – leveraging across projects

TIM development team

Dr. Hannah Daly

- Lecturer in Energy Systems Modelling, UCC & Funded Investigator, MaREI
- Co-PI CAPACITY project, PI/Supervisor of CCAC Carbon Budget Fellowship

Dr. Olexandr Balyk

Research Fellow, CAPACITY project - Model coordination & integration

Jason McGuire

PhD researcher with CAPACITY project – residential sector

Andrew Smith

Climate Change Advisory Council & EPA Fellowship on Carbon Budgets

Dr. James Glynn

• Former Research Fellow & lead, CHIMERA project

Vahid Aryanpur

- PhD researcher with CHIMERA project transport sector
- Dr. Xiufeng Yue
 - Former postdoc, CHIMERA project, lecturer Dalian University of Technology
- Ankita Gaur
 - MaREI PhD researcher energy demand drivers

With support and input from wider Energy Policy & Modelling Group at UCC & E4sma

Prof. Brian O'Gallachoir Dr. Shane McDonagh Vera O'Riordan Dr. Fionn Rogan Dr. Paul Deane Dr. Alessandro Chiodi Maurizio Gargiulo

26.11.2021

Contact h.daly@ucc.ie

