Fossil fuels subsidy removal and the EU Green Deal policy mix design

Alessandro Antimiani Valeria Costantini Elena Paglialunga

DG Trade - Chief Economist Unit Roma Tre University - Department of Economics, and SEEDS University of Urbino - Department of Economics, Politics, Society, and SEEDS

EU CONFERENCE on Modelling for Policy Support 22-26 November 2021

Outline Policy debate Quantitative measures

Outline

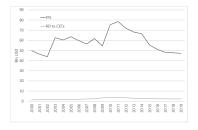
- The monetary value of fossil fuels subsidies
- The modelling approach and simulation design
- Main results for the EU
- Conclusions and policy implications

Ξ.

くぼ ト く ヨ ト く ヨ ト

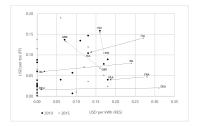
Outline Policy debate Quantitative measures

Fossil fuels subsidy removal


- Global fossil-fuel consumption subsidies are recognised as a barrier to reach ambitious low-carbon targets (Chepeliev et al., 2018; Chepeliev and van der Mensbrugghe, 2020)
- Large environmental negative impacts are provoked by subsidies (the coal case in China by Xiang and Kuang, 2020)
- Concerns are related to the risks of regressive impacts on low-income households (Reanos and Sommerfeld, 2018)
- Lack of confidence in the ability of governments to reallocate the resulting budgetary savings (Clements et al., 2013)
- Potential development opportunities from revenue recycling are large (Jakob et al., 2015)

< 回 > < 三 > < 三 >

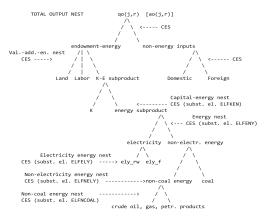
Outline Policy debate Quantitative measures


Monetary value of subsidies: fossil fuels vs renewables

Fossil-fuel and R&D to CETs subsidies in EU27 (const 2015USD)

Note: own elaborations on IMF and OECD database

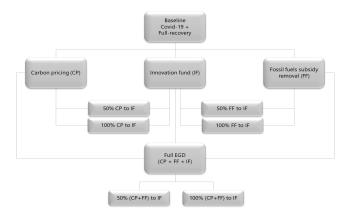
Unitary subsidy for RES and fossil fuels in EU27 and UK (2015-2019)


Note: own elaborations on IMF and OECD database

∃ ► < ∃ ►</p>

GDynEP Simulation desigr

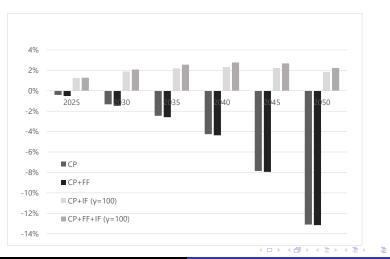
Substitution in the electricity nest


Nests in production output with GTAP Energy and Power data

イロト イヨト イヨト イヨト

GDynEP Simulation design

Linkages across different policy instruments

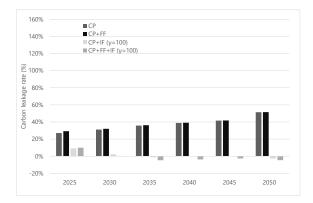


イロン イ団 と イヨン イヨン

GDP and carbon leakage Policy mix design

GDP impact under different scenarios

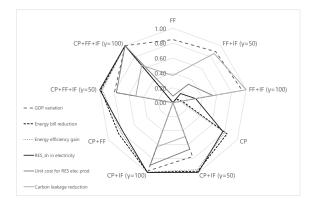
GDP for the EU27 (% change w.r.t. BAU)



Antimiani, Costantini, Paglialunga EU CONFERENCE on Modelling for Policy Support 2021

GDP and carbon leakage Policy mix design

Carbon leakage effect


Carbon leakage rate (%)

문어 문

Policy mix design

Policy complexity and optimal design (EU27 at 2050)

イロン イ団 と イヨン イヨン

÷.

Main conclusions and policy implications References

Optimal policy mix design with multiple instruments

- The European Green Deal must be evaluated with tools that allow for introducing complexity and non-linear interactions
- The multiple instruments addressed in the EGD should be analysed both separately and simultaneously
- By simply adding fossil fuels subsidy removal to carbon taxation might bring to further economic losses
- On the opposite collecting revenues to be recycled into innovative activities related to CETs is beneficial for the EU economy and reduces carbon leakage
- Under the Next Generation EU Fund (investing in a green, digital and resilient society) further resources could be directed to the sustainable energy transition
- Policy coordination is crucial for minimising resource waste and exploiting opportunities of positive spillover effects, with potential effects outside the EU borders

< ロ > < 同 > < 回 > < 回 > < 回 > <

э.

Model settings	
Conclusions	

- Aguiar, A., Chepeliev, M., Corong, E., McDougall, R., van der Mensbrugghe, D. (2019). The GTAP Data Base: Version 10. Journal of Global Economic Analysis, 4:1-27.
- Chepeliev, M. (2020). GTAP-Power 10 Data Base: A Technical Note (GTAP Research Memorandum No. 31).
- Chepeliev, M., van der Mensbrugghe, D. (2020). Global fossil-fuel subsidy reform and Paris Agreement. Energy Economics, 85:104598.
- Chepeliev, M., McDougall, R., van der Mensbrugghe, D. (2018). Including fossil-fuel consumption subsidies in the GTAP data base. Journal of Global Economic Analysis, 3:84-121.
- Clements, M.B.J., Coady, D., Fabrizio, M.S., Gupta, M.S., Alleyne, M.T.S.C., Sdralevich, M.C.A. (2013). Energy subsidy reform: lessons and implications. International Monetary Fund (IMF).
- Corradini, M., Costantini, V., Markandya, A., Paglialunga, E., Sforna, G., (2018). A dynamic assessment of instrument interaction and timing alternatives in the EU low-carbon policy mix design. *Energy Policy*, 120:73-84.
- Irfanoglu, Z., van der Mensbrugghe, D. (2016). Non-CO2 documentation V9. Purdue University.
- Jakob, M., Chen, C., Fuss, S., Marxen, A., Edenhofer, O. (2015). Development incentives for fossil fuel subsidy reform. Nature Climate Change, 5:709–712.
- McDougall, R., Golub, A. (2009). GTAP-E: A Revised Energy-Environmental Version of the GTAP Model. GTAP Research Memorandum No. 15, Purdue University.
- Peters, J. C. (2016). GTAP-E-Power: An Electricity-detailed Economy-wide Model. Journal of Global Economic Analysis, 1:156-187.
- Reanos, M.A.T., Sommerfeld, K. (2018). Fuel for inequality: Distributional effects of environmental reforms on private transport. Resource and Energy Economics, 51:28-43.
- Xiang, H., Kuang, Y. (2020). Who benefits from China's coal subsidy policies? A computable partial equilibrium analysis. Resource and Energy Economics, 59:101124.

< ロ > < 同 > < 三 > < 三 >

э.