

The Impact of EU Grants for Research and Innovation on Private Firms' Performance

Gábor Kátay Pálma Mosberger Francesco Tucci, 24 November 2020

Objective

- Objective: assess the impact of of EU research grants on profit-oriented firms' performance
- ► One of the largest funding programmes for R&I worldwide
 - ► 5-year, then 7-year Framework Programmes (FP) since 1984
 - ► FP7 runs from 2007 to 2013, total budget of over € 50bn
- ightharpoonup We focus on private firms participating in the "Cooperation" programme (\sim 2/3 of the budget)
 - excluded: academic research ("Ideas"), researchers' mobility ("People"), research infrastructure ("Capacities"), nuclear research
- Performance measures: post-treatment sales, number of employees, labour productivity

The selection procedure

- ▶ 1 or 2-round selection procedure / call
- ► At least 3 independent expert give scores between [0,15]
- ► Evaluation meeting of experts → common agreed score between [0,15] (sometimes transformed to [0,100])
- ► EC decides on a threshold:
 - above the threshold: granted
 - below the threshold: put on reserve list or rejected
- ► "Non-compliers" (about 6.5% of the sample):
 - ► Above the threshold, but no contract signed at the end
 - ► These projects are replaced by others from the reserve list
 - The funding programme can also be extended
- ▶ → Perfect setup for a fuzzy RDD

Identification strategy

- ► Score is a proxy for the "quality" of the project proposal. Higher score → better and more viable project → larger expected impact
- Impact of the fund: discontinuity around the threshold
- ightharpoonup RDD: Comparison of firms between "marginal beneficiaries" and "marginal non-beneficiaries"
- lackbox Fuzzy RDD because of "non-compliers"

Score & sales

Score & nb. of employees

Score & productivity

Estimation technique

- First stage regression: the probability of being awarded depends on:
 - the score is above the threshold
 - polynomial of the score (separately below and above the threshold)
 - other controls (potentially including the pre-treatment dep. var.)
- ► Second stage regression: the outcome variable is regressed on:
 - the predicted probability of being awarded from the first stage
 - polynomial of the score (separately below and above the threshold)
 - other controls (potentially including the pre-treatment dep. var.)

Estimation technique (cont'd)

- Lower weights for observations further away from the threshold (triangular)
- Bandwidth selection: the one that minimises the Mean Squared Error (MSE)
- Optimal order of the polynomial: the one that minimises MSE
- Local average treatment effect (LATE) = coeff. of "awarded" in the second stage
- ightharpoonup Coeffs of X_i in the first stage: factors influencing the probability of being selected from the reserve list

- ▶ Observed treatment outcome at the firm-level → drop parallel projects (marked in red)
 - ightharpoonup Firm 1, appl. 2: treated at the same time ightharpoonup cannot be used as counterfactual

succesful (score = 3)

Firm 1, appl. 3: still treated at the end of the project

unsuccesful (score = -6)

- Outcome variable: log(sales / nb. of employees / productivity) after the end of the project relative to the (country × industry × time) mean
- ▶ Pre-treatment covariates: same measure *before* the call

apll, 1

apll. 2

First stage regressions

	Sales	Nb. of employees	Productivity
Above thold. (score \geq 0)	0.754***	0.810***	0.788***
Pre-treatment dep. var.	0.002*	0.003	-0.005
Cooperation with:			
Research inst.	0.055***	0.074***	0.076***
Higher edu.	0.018***	0.013	0.019**
Public inst.	-0.022**	-0.035***	-0.032***
Associate country	0.022***	0.032***	0.033***
Candidate country	-0.036***	-0.021	-0.027*
Tiers country	-0.029**	-0.013	-0.019
New member state	0.027***	0.032***	0.028***

Validity tests

The impact of FP7 grants

	Sales	Nb. of employees	Productivity
Award	0.260***	-0.047	0.186***
Pre-treatment dep. var.	0.870***	0.896***	0.660***
Other controls	Yes	Yes	Yes

► The FP7 grants for R&I have had a significant impact on firms' post-treatment sales and productivity, but no impact on employment.

Manipulation of the running variable

- ► Individuals / firms may behave in response to rules that allocate resources
- ▶ In our case, manipulation is unlikely to be relevant
 - ► firms cannot manipulate their score around the cut-off
 - external experts don't know the threshold in advance

Discontinuity in the pre-treatment variables

- ► The treatment (grant) cannot influence variables determined prior to the award decision
- Test the discontinuity in the pre-treatment variables using the same RDD technique

	Sales	Nb. of employees	Productivity
Award	0.120	-0.191	0.023
	(0.125)	(0.209)	(0.054)

Validity tests

Discontinuity at other cut-off points

- We do not expect discontinuities at other points of the assignment variable
- ▶ Test the discontinuity at c = -0.5 and c = 0.5

	Sales	Nb. of employees	Productivity
Cut-off point: -0.5	0.216	2.308	-0.037
	(0.200)	(5.394)	(0.607)
Cut-off point: 0.5	-0.199	0.430	-0.453
	(0.180)	(0.311)	(0.930)

Robustness checks

	Sales	Nb. of employees	Productivity
(a) Polynomial order: 1	0.260***	-0.047	0.186***
(b) Polynomial order: 2	0.370***	-0.051	0.219***
(c) Polynomial order: 3	0.340*	-0.099	0.244***
(d) Epanechnikov kernel	0.241***	-0.051	0.182***
(e) Uniform kernel	0.206***	-0.076	0.193***
(f) CCT Bandwidth	0.305***	-0.024	0.158***
(g) W/o pre-treatment dep. var.	0.210*	0.006	0.164***
(h) W/o covariates	0.194*	-0.008	0.162***
(i) Score rounded	0.308***	-0.008	0.153***

The FP7 Funds

- ▶ Objectives:
 - 1. Cooperation: fostering transnational collaborative research consortia, i.e. funds for innovation (2/3 of the budget)
 - 2. Ideas: academic research
 - 3. People: researchers' mobility
 - 4. Capacities: strengthening the research capacity (e.g. research infrastructure)
 - 5. Nuclear research
- ► The standard reimbursement rate is 50%. non-profit public bodies, SMEs: 75%, frontier research: 100%)
- ► We concentrate on private firms participating in the "Cooperation" programme
 - ► Analysis covers 46 countries, about 220 calls, 12'000 projects and 24'000 firms

Theory

- Private R&D investments falls short of the socially optimal level (Nelson, 1959)
- ► Innovation-related knowledge entails (Arrow, 1962):
 - non-divisibility (half the knowledge of the technology is not worth half the full one)
 - "non-probabilisable" uncertainty
 - non-full appropriability (even if there is patent protection)
- ► Financial frictions caused by information asymmetries also lead private firms to engage less in R&D (Griliches, 1986)
- Critics: subsidy programs crowd out private investment or allocate funds inefficiently (e.g. Lerner, 2009)

Empirical studies

- ► Early studies mainly relied on matching methods → mixed results (see Zúñiga-Vicente et al., 2014)
- ► Studies using quasi-experimental methods:
 - ► + effect on investment spending, but only for small firms (Bronzini and Iachini, 2014, regional programme in northern Italy)
 - ► + effect on the number of patent applications, more marked for smaller firms (Bronzini and Piselli, 2016, regional programme in northern Italy)
 - ► for small high-tech firms: + effects on revenues, number of patents, survival probability, the probability of receiving Venture Capital financing even in the absence of enforcement (signalling effect. see Howell, 2017)

CORDA

1. FP4-FP7 project databases:

- ► information on the contract, such as sum of grant awarded, total cost of the project, starting and ending date...
- regularly updated until the end of the project
- Firm identifier available: VAT number (+ name of the company, address, web page...)

2. FP7 proposal database:

- information on the application, such as sum of grant asked, score obtained....
- not updated later
- no firm identifier, only name of the company, address...

3. H20 metadata:

- harmonised database of winners starting somewhere during FP7
- ► Firm identifier (VAT number) + name of the company + ...

ORBIS

- Database maintained by Bureau van Dijk
- Largest database for firms containing balance sheet information retrieved from official business registers, annual reports, newswires, webpages...
- ▶ Data over several decades until 2015 (or 2016)
- Availability of data varies by year, country, variable...

Matching

All these datasets are matched using:

- 1. exact identifiers (project ID, VAT number for successful applicants)...
- 2. ...and similarity score matching using company names:
 - takes into account name misspellings, name variations, ...
 - ightharpoonup generates a measure of distance $\in [0, 1]$ with 1 = perfect match
 - ▶ information on email address, web page, telephone number and postal address are used to find the correct link among the possible alternatives
 - manual cross-check of dubious matches
- ▶ 71% of firms matched; 98% in terms of amount of grants awarded. → Non matched are mostly non-successful applicants (control group).

Score, threshold and non-compliants

- ► Score normalised between [0,1], 0 = threshold
- ► Threshold: lowest score for "awarded" above the first occurrence of a "reserve list" or "rejected"
- ► Non-compliers (nb. of obs.):

	Not awarded	Awarded	Total
Score < threshold	8,924	406	9,330
	(72.45)	(3.30)	(75.74)
Score > threshold	398	2,590	2,988
	(3.23)	(21.03)	(24.26)
Total	9,322	2,996	12,318
	(75.68)	(24.32)	(100.00)

Estimation technique

$$\begin{cases} \text{first stage: } D_i = \alpha \mathbf{1}[S_i \geq 0] + \sum_{j=1}^p \beta_j S_i^j + \sum_{j=1}^p \gamma_j S_i^j \mathbf{1}[S_i \geq 0] + \delta X_i' + \epsilon_i \\ \text{second stage: } Y_i = \theta \hat{D}_i + \sum_{j=1}^3 \lambda_j S_i^j + \sum_{j=1}^p \mu_j S_i^j \mathbf{1}[S_i \geq 0] + \rho X_i' + v_i \end{cases}$$

- $ightharpoonup D_i = awarded dummy$
- $ightharpoonup S_i = \text{score} = \text{forcing variable } (0 = \text{threshold})$
- ▶ $1[S_i \ge 0]$ = score is above the threshold
- $ightharpoonup X_i' =$ other controls (including pre-treatment dep. var.)

Estimation technique (cont'd)

- ► Lower weights for the observations further away from the threshold (triangular)
- bandwidth selection: MSE-optimal bandwidth selector
- ► Optimal *p*: the one that minimises MSE
- ► LATE = $E[Y_i(1) Y_i(0) | score = 0] = coeff.$ of "awarded" (\hat{D}_i) in the second stage
- ► Coeffs of *X_i* in the first stage: factors influencing the probability of being selected from the reserve list